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Abstract
In Dynamic flow networks an edge’s capacity is the amount of flow (items) that can
enter it in unit time. All flowmust be moved to sinks and congestion occurs if flow has
to wait at a vertex for other flow to leave. In the uniform capacity variant all edges have
the same capacity. The minmax k-sink location problem is to place k sinks minimizing
the maximum time before all items initially on vertices can be evacuated to a sink.
The minmax regret version introduces uncertainty into the input; the amount at each
source is now only specified to within a range. The problem is to find a universal
solution (placement of k sinks) whose regret (difference from optimal for a given
input) is minimized over all inputs consistent with the given range restrictions. The
previous best algorithms for the minmax regret version of the k-sink location problem
on a path with uniform capacities ran in O(n) time for k = 1, O(n log4 n) time for
k = 2 and Ω(nk+1) for k > 2. A major bottleneck to improving those solutions
was that minmax regret seemed an inherently global property. This paper derives new
combinatorial insights that allow decomposition into local problems. This permits
designing two new algorithms. The first runs in O(n3 log n) time independent of k
and the second in O(nk2 logk+1 n) time. These improve all previous algorithms for
k > 1 and, for k > 2, are the first polynomial time algorithms known.
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1 Introduction

Dynamic flow networks model movement of items on a graph. The process starts
with each vertex v assigned some initial set of supplies wv . Supplies flow between
neighboring vertices. Each edge e has a given capacity ce which limits the rate of
the flow of supplies entering that edge in unit time. If there is some c > 0 such that
∀e, ce ≡ c, the network has uniform capacity. Each e also has associated with it a
time required to traverse e. Note that as supplies move around the graph, congestion
can occur, as supplies back up at a vertex.

Dynamic flow networks were introduced by Ford and Fulkerson in [18] and have
since been extensively researched. One well studied problem on such networks is
transshipment, e.g., [23], in which the graph has several sources and sinks, with sup-
plies on the sources and each sink having a specified demand. The problem is to find
the quickest time required to satisfy all of the demands. Hoppe and Tardos [23] provide
a polynomial time algorithm for this problem.

Dynamic Flow also models evacuation problems [21]. Vertices model buildings
and the items on vertices represent evacuees in buildings. Since our work also fits this
evacuation analogy, we will refer to items on vertices as evacuees. and edges are roads
connecting buildings. The sinks play the role of exits to safety from the roads. The
problem is to find a routing strategy (evacuation plan) that evacuates everyone to the
sinks in minimum time. In these problems the evacuation plan is vertex based. That
is, all supplies from a vertex evacuate out through a single edge given by the plan
(corresponding to a sign at that vertex stating “this way out”). Such a flow, in which
all flow through a vertex leaves through the same edge, is known as confluent. The
basic minmax optimization problem is to determine a plan that minimizes the total
time needed to evacuate all the evacuees. Confluent flows are known to be difficult
on general graphs; solving, or even approximating to a constant factor, the quickest
confluent flow problem with even one sink is NP-Hard [19,24]. Research on finding
exact quickest confluent dynamic flows is therefore restricted to special graphs, such
as trees and paths.

In some versions of the problem the sinks are known in advance. In others, such as
the one addressed in this paper, locating the sinks that minimize the evacuation time
is part of the problem; only the number k of allowed sinks is given as input. Mamada
[28] gives an O(n log2 n) algorithm for solving the 1-sink problem on a dynamic
tree network. Higashikawa et al. [21] improve this down to to O(n log n) for uniform
capacities. For k sinks this can be solved in O(nk2 log5 n) time for general capacities
and O(nk2 log4 n) for uniform capacities [15]. Higashikawa et al. [22] show how
to solve the k-sink problem on a uniform capacity dynamic path network in O(kn)

time which was later reduced down to O
(
min(n log n, n + k2 log2 n)

)
by [7].We note

that all the results above refer to the minmax problem of minimizing the maximum
evacuation time. There is also a correspondingminsum problemofminimizing the total
sum of all of the evacuation times of all of the flow. This can be solved on a dynamic
path network [5] in time O(kn2 log2 n) for general capacities and O(kn log3 n) for
uniform capacities.

In practice, the exact number of evacuees located at a vertex is unknown at the
time the plan is drawn up and robust optimization is needed. One approach to robust
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optimization is probabilistic, with the number of evacuees at a vertex being drawn
from known distributions. In another, the one used in this paper, all that is known
is the (interval) range in which that number may fall. One way to deal with this
type of uncertainty is to find a plan that minimizes the regret, e.g. the maximum
discrepancy between the evacuation time for the given plan on a fixed input and the
plan that would give the minimum evacuation time for that particular input. This is
knownas theminmax regretproblem.Minmax regret optimizationhas been extensively
studied for k-median [10,13,38] and k-center [3,11,32,38] ([12] is a recent example)
along with many other optimization problems [17,33,37]. Aissi et al. [1], Averbakh
and Lebedev [4], Candia-Véjar et al. [14] and Kouvelis and Gang [25] provide an
introduction to the literature. Since most of these problems are NP-Hard to solve
exactly on general graphs, the vast majority of the literature is again concerned with
algorithms on special graphs, in particular paths and trees.

Recently there has been a series of new results for k-sink evacuation on special
structure dynamic graphs. The 1-sink minmax regret problem on a uniform capacity
path was originally proposed by [16] who gave an O(n log2 n) algorithm. This was
reduced down to O(n log n) by [20,34,35] and then to O(n) by [9]. Xu and Li solve
the 1-sink minmax regret problem on a uniform capacity cycle in O(n3 log n) time
[36]. Higashikawa et al. [21] provides an O(n log2 n) algorithm for the 1-sinkminmax
regret problem on a uniform capacity tree; this was reduced to O(n log n) by [9].

Returning to the minmax regret problem uniform capacity path case; for k = 2,
[27] gave an O(n3 log n) algorithm, later reduced to O(n log4 n) by [9].

For k > 2 the only previous algorithm known was O
(
n1+k(log n)1+log k

)
[30]. The

exponential growth with k for that algorithm was an inherent property of the structural
technique used.

We also note two other related sink regret problems. The first is the regret version
of the k = 1 minsum problem on a path with uniform capacities. This was originally
solved in O(n3) time by [5] and then reduced down to O(n2 log2 n) time by [8]. The
second is the original minmax regret problem with k = 1 sink on a general graph with
uniform capacities and confluent flows but with the problem restricted so that every
vertex evacuates all of its flow along the shortest path to the sink. This can be solved
[26] in O(m2n3) time where m is the number of edges in the graph.

Organization This paper develops new structural properties of the minmax regret
solution for paths, leading to better algorithms. Section 3 proves that, independent of
k, there are only O(n2) worst case scenarios that need to checked. This independence
permits overcoming the exponential dependence upon k in [30]. Section 4 develops
properties of worst-case solutions that could lead to efficient algorithms. Section 5
develops further such properties. Section 6 develops two such algorithms, both of
which improve on the previous ones in all k > 1 cases. The first, better for small
k, runs in O(nk2(log n)k+1), which will be the best algorithm for any fixed k > 1.
In particular for k = 2, it runs in O(n log3 n) time improving upon the O(n log4 n)

algorithm of [9]. The second, which is better for large k (where k is dependent upon
n) runs in O(n3 log n) time with no dependence upon k. Section 7 discusses possible
extensions.We emphasize that this paper assumes that all edges have the same capacity.
This follows all priorwork in this area e.g., on the path [9,16,20,34,35], trees [9,21] and
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the cycle [36], which make the same uniform capacity assumption. Section 7 briefly
discusses the structural reason why this and all previous work have not attempted to
address the case in which different edges can have different capacities.

Finally, we note that our algorithms use as a subroutines procedures for efficiently
calculating evacuation times. These procedures are straightforward modifications of
well-developed techniques from [7,9,16] and contain very few new ideas. To keep this
paper self contained, their proofs are provided in the “Appendix” in Sect. 8.

2 Preliminary Definitions

2.1 Model Definition

Let P = (V , E) be a path of (n + 1) vertices V = {x0, x1, . . . , xn} along a line:
x0 < x1 < . . . < xn . E = {e1, e2, . . . , en} with ei = (xi−1, xi ) are the n edges
connecting the xi . For intuition we will sometimes refer to the vertices as buildings
and the edges as roads connecting the buildings. Flow will correspond to evacuees.

We use d(xi , x j ) = |xi − x j | to denote the distance between xi and x j and τ to
denote its pace or inverse-speed. Thus, travelling from xi to x j requires τd(xi , x j )
time. All edges have fixed capacity c > 0; this is the number of items that can enter
an edge in unit time. Intuitively, this can be visualized as the road’s width (number of
lanes), i.e., the number of items that can travel in parallel along the road.

Each vertex xi also has a fixed but unknown weightwi ≥ 0 denoting the number of
people (evacuees) initially located at xi . The input is a range [w−

i , w+
i ] within which

wi must lie.
Let S denote the Cartesian product of all weight intervals for 0 ≤ i ≤ n:

S :=
∏

0≤i≤n

[w−
i , w+

i ].

A scenario s ∈ S is an assignment of weights to all vertices. The weight of a vertex
xi under scenario s is denoted by wi (s). S is the set of all scenarios consistent with
the input restrictions.

Our arguments will often use “argmax”. In the case of ties, “argmax” returns the
smallest index that achieves the maximum, i.e.,

argmax
i∈I

f (i) := min

{
j ∈ I : f ( j) = max

i∈I
f (i)

}
.

2.2 Evacuation Time

Let P = (V , E) be a path with uniform edge capacity c, pace τ and specified scenario
s ∈ S.
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2.2.1 Left and Right Evacuation

Consider W units of flow starting at vertex xi moving right. They require W/c +
τ(xi+1 − xi ) time until the last flow arrives at xi+1; W/c time before the last flow
leaves xi and τ(xi+1− xi ) further time until it arrives at xi+1. If this flow is continuing
on to xi+2, it might or might not have to wait at xi+1 before entering edge [xi+1, xi+2],
depending upon whether other evacuees remain present on xi+1 at the time the first
flow from xi arrives there. It is these congestion effects that complicate the analysis.

Consider a single sink x ∈ P (x is not restricted to be a vertex in V ).
See Fig. 1. Define ΘL(P, x, s) (resp. ΘR(P, x, s)) to be the time taken to evacuate

everything to the left (right) of sink x to x under scenario s. The left (right) evacuation
times have been derived by many authors, e.g., [9] to be

ΘL(P, x, s) = max
xi<x :Ws

0,i>0

{
(x − xi )τ + Ws

0,i

c

}
(1)

ΘR(P, x, s) = max
xi>x : Ws

i,n>0

{
(xi − x)τ + Ws

i,n

c

}
(2)

where for a ≤ b, Ws
a,b = ∑b

j=a w j (s).
Note Intuitively, ΘL(P, x, s) is the time at which the last evacuee from x0 arrives

at x . Let xi < x be any vertex. The time required for the first evacuee leaving xi to
travel to x , without congestion, is T1(i) = τ(x − xi ). The minimum time required
for all evacuees in [x0, xi ] to pass through xi is T2(i) = 1

cW
s
0,i . Thus ΘL(P, x, s) ≤

T1(i) + T2(i). This is valid for every i so the right side of Eq. 1 is a lower bound for
ΘL(P, x, s). One can show that if xi∗ is the rightmost vertex at which the first evacuee
from x0 experiences congestion by having towait, thenΘL (P, x, s) = T1(i∗)+T2(i∗),
proving (1). The derivation of ΘR(P, x, s) is similar.

As stated, our setup assumes that sinks may be placed anywhere on the path and
not just on a vertex. We note that our results will continue to hold even if sinks are
restricted to be on vertices, i.e., our algorithms will still find the minmax regret k-sink
location problem in the same amount of time under those new placement restrictions.
Section 7 briefly discusses why this is true.

Fig. 1 Illustration of left and right evacuation. Scenario s assigns w j = w j (s) initial units of flow to vertex
x j . All verices are evacuated to a sink at x . The time ΘL (P, x, s) to evacuate everything to the left of x to
x and the time ΘR(P, x, s) to evacuate everything to the right of x to x are given by Eqs. 1 and 2. Total
evacuation time is the maximum of the two
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2.2.2 1-Sink Evacuation

The evacuation time to sink x is the maximum of the left and right evacuation times:
(Fig. 1)

Θ1(P, x, s) := max
{
ΘL(P, x, s),ΘR(P, x, s)

}
. (3)

2.2.3 k-Sink Evacuation

Definition 1 (Fig. 2) A separation of path P into k subpaths is denoted by P̂ =
{P1, P2, . . . , Pk}, Pi = [xli , xri ] where l1 = 0, rk = n and li+1 = ri + 1. Each
Pi ∈ P̂ will be called a partition. Ŷ = {y1, y2, . . . , yk} denotes a set of sinks such
that yi ∈ Pi . Given P̂ and sinks Ŷ , vertices in partition Pi are restricted to evacuate
only to sink yi

Every vertex belongs to only one subpath. This implies that all evacuees passing
through the same vertex must evacuate to the same sink, i.e., a confluent routing. The
pair {P̂, Ŷ } defines an evacuation protocol for the path P .

The k-sink evacuation time with evacuation protocol {P̂, Ŷ } under scenario s is
the maximum of the evacuation times within the individual partitions, i.e.,

Θk(P, {P̂, Ŷ }, s) := max
1≤i≤k

Θ1(Pi , yi , s) (4)

Definition 2 Given P̂, Ŷ , set

d := argmax
1≤i≤k

Θ1(Pi , yi , s).

The partition Pd withmaximum evacuation cost (breaking ties to the leftmost) is called
the “dominant partition for {P̂, Ŷ } under scenario s”. We use yd to denote “the sink
associated with the dominant partition Pd”.

2.3 The Optimal k-Sink Location Problem

The Optimal k-Sink Location Problem is to find the minimum evacuation cost using
k sinks, i.e,

Fig. 2 k-sink evacuation on Path P with partitions and sinks {P̂, Ŷ }
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Θk
opt(P, s) := min

P̂,Ŷ
Θk

(
P, {P̂, Ŷ }, s

)
,

and an evacuation protocol {P̂∗, Ŷ ∗} that achieves this minimum, i.e.,

Θk
(
P, {P̂∗, Ŷ ∗}, s

)
= Θk

opt(P, s).

2.4 Regret

For fixed {P̂, Ŷ } and s ∈ S, the regret is defined as the difference between
Θk(P, {P̂, Ŷ }, s) and the optimal k-sink evacuation time for s, i.e.,

R
(
{P̂, Ŷ }, s

)
:= Θk(P, {P̂, Ŷ }, s) − Θk

opt(P, s) (5)

The following self-evident property will be needed later:

Property 1 If Pd is the dominant partition for {P̂, Ŷ } under scenario s, then

R
(
{P̂, Ŷ }, s

)
= Θ1(Pd , yd , s) − Θk

opt(P, s) ≥ 0.

Definition 3 The maximum regret (called max-regret) achieved (over all scenarios)
for a choice of {P̂, Ŷ } is:

Rmax

(
{P̂, Ŷ }

)
:= max

s∈S

{
R

(
{P̂, Ŷ }, s

)}
(6)

If Rmax({P̂, Ŷ }) = R({P̂, Ŷ }, s∗) for some scenario s∗ ∈ S, then s∗ is a worst-case
scenario for {P̂, Ŷ }.
Definition 4 The k-sink minmax regret value for P is

Rk
max(P) := min

{P̂,Ŷ }
Rmax

(
{P̂, Ŷ }

)
.

2.5 TheMinmax Regret k-Sink Location Problem

The input for the minmax regret k-Sink Location Problem is a dynamic path network
with path P , vertex weight intervals [w−

i , w+
i ], edge capacity c, and pace τ . The

problem can be viewed as a 2-person Stackelberg game [31, 97–98] between the
algorithm A and adversary B:

1. Algorithm A (leader): creates an evacuation protocol {P̂, Ŷ } as defined in
Sect. 2.2.3.

2. Adversary B (follower): chooses a regret-maximizingworst-case scenario s∗ ∈ S
for {P̂, Ŷ } i.e., R({P̂, Ŷ }, s∗) = Rmax({P̂, Ŷ }).
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(a) (b)

Fig. 3 Illustrations of Lemma 1 and Definition 5. “+”s denote that wi (s) = w+
i . “−”s denote that wi (s) =

w−
i

A’s objective is to find Rk
max(P) and an evacuation protocol {P̂∗, Ŷ ∗} thatminimizes

this max-regret, i.e.,

Rk
max(P) = Rmax

(
{P̂∗, Ŷ ∗}

)
.

3 Worst Case Scenarios and Their Properties

A priori, every {P̂, Ŷ } might have a different associated worst case scenario. This
section describes an O(n2) size set of scenarios S∗ that contains a worst case scenario
for every evacuation protocol. That is, for every {P̂, Ŷ }, some s∗ ∈ S∗ is a worst-case
scenario for {P̂, Ŷ }.

For k = 1, all the previous work on minmax regret on paths1 used the existence of
an O(n) size set that contains a worst-case scenario for each protocol. The intuitive
reasonwhy the algorithm in [30] blew up exponentially in k was that it needed to check
an exponentially growing (in k) set of worst case scenarios. The main observation of
this paper, the one leading to improved algorithms, is that only a set of size O(n2),
independent of k, is needed.

To derive S∗, start by assuming that A has chosen {P̂, Ŷ } and B has countered
by choosing some worst-case scenario s∗ ∈ S for that {P̂, Ŷ }. Let Pd ∈ P̂ be the
dominant partition for {P̂, Ŷ } under s∗.

Lemma 1 describes how to modify s∗ outside Pd ; Theorem 1 describes how to
modify s∗ within Pd . Both types of modifications will maintain s∗ as being worst case
for {P̂, Ŷ } and Pd as its dominant partition.

Lemma 1 See Fig. 3a. Let s∗ ∈ S be a worst-case scenario for {P̂, Ŷ } with Pd its
associated dominant partition. Define s∗

B by

wi (s
∗
B) :=

{
wi (s∗) if xi ∈ Pd ,
w−
i if xi /∈ Pd .

Then s∗
B is also a worst-case scenario for {P̂, Ŷ } with dominant partition Pd .

Proof The evacuation time in Pd is the same for s∗
B as for s∗ becausewi (s∗) = wi (s∗

B)

within Pd . The evacuation time in the other partitions might be less in s∗
B than s∗ since

1 On trees, a corresponding result for k = 1 [9,21] shows the existence of a set of O(n2) worst-case
scenarios with nothing known when k > 1.
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some of the values might be decreased but that can only reduce the evacuation times
in other partitions. Thus

Θk
(
P, {P̂, Ŷ }, s∗

B

)
= Θ1(Pd , yd , s

∗
B) = Θ1(Pd , yd , s

∗) = Θk(P, {P̂, Ŷ }, s∗) (7)

where yd is the sink associated with Pd .
Furthermore, reducing the value of some wi (s∗) can not increase the optimal evac-

uation time so,

Θk
opt(P, s∗

B) ≤ Θk
opt(P, s∗). (8)

Thus

R({P̂, Ŷ }, s∗
B) = Θk(P, {P̂, Ŷ }, s∗

B) − Θk
opt(P, s∗

B)

≥ Θk(P, {P̂, Ŷ }, s∗) − Θk
opt(P, s∗)

= R
(
{P̂, Ŷ }, s∗) .

Thus s∗
B is also a worst-case scenario with dominant partition Pd . �	

Lemma 1 permits assuming that all vertices outside Pd have weights w−
i . We now

examine the scenario inside Pd .

Definition 5 See Fig. 3b. Consider Partition P ′ = [xl , xr ]. and let s ∈ S be any fixed
scenario.

A scenario s ∈ S is called left/right-dominant for P ′ if, w j (s) = w−
j for j < l and

j > r and there exists some i satisfying l ≤ i ≤ r such that

– Left-dominant: w j (s) = w+
j for l ≤ j < i and w j (s) = w−

j for i ≤ j ≤ r .

– Right-dominant: w j (s) = w−
j for l ≤ j < i and w j (s) = w+

j for i ≤ j ≤ r .

Given P̂ and Pi ∈ P̂ , let S i
L (resp. S i

R) denote the set of all left-dominant (resp.
right-dominant) scenarios for Pi .

Theorem 1 Fix {P̂, Ŷ }. Let s∗ ∈ S be any worst-case scenario for {P̂, Ŷ } and Pd its
associated dominant partition. Then there exists a scenario s∗

B ∈ Sd
L

⋃Sd
R such that

s∗
B is also a worst-case scenario for {P̂, Ŷ } with Pd its associated dominant partition.

Proof See Fig. 4. Let s∗ ∈ S be a worst-case scenario for {P̂, Ŷ } with associated
dominant partition Pd = [xld , xrd ] ∈ P̂ . Without loss of generality, from Lemma 1,
we may assume that for xi outside Pd , wi (s∗

B) = w−
i .

To prove the Theorem we show that by only changing weights within Pd , we can
modify s∗ to s∗

B ∈ Sd
L

⋃Sd
R while regret does not decrease.

Without loss of generality, assume thatΘL(Pd , yd , s∗) ≥ ΘR(Pd , yd , s∗) (the other
case is symmetric). From Eq. 1,

ΘL(Pd , yd , s
∗) = max

i : xld ≤xi<yd

Ws∗
ld ,i>0

g(Pd , yd , s
∗ : i) (9)
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Fig. 4 Illustration of proof of Theorem 1. A left-dominant worst-case scenario for Pd with sink yd . Left
evacuation time dominates. m is the index i that maximizes Eq. 10

where

g(Pd , yd , s
∗ : i) = (yd − xi )τ + 1

c
Ws∗

ld ,i . (10)

Let m be the index i which maximizes the right hand side of Eq. 9 (in case of ties,
choose the smallest such i).

We now show the transformation from s∗ to s∗
B . There are three possible locations

for vertices xt ∈ Pd (see Fig. 4):
(i) yd ≤ xt ≤ xrd : For any such t , set wt (s∗

B) = w−
t . Reducing a weight can not

increase evacuation time so

ΘR(Pd , yd , s
∗
B) ≤ ΘR(Pd , yd , s

∗) ≤ ΘL(Pd , yd , s
∗) = ΘL(Pd , yd , s

∗
B).

Thus Θ1(Pd , yd , s∗
B) = Θ1(Pd , yd , s∗). By the definition of dominant partition,

Θk
(
P, {P̂, Ŷ }, s∗

B

)
= Θ1(Pd , yd , s

∗
B) = Θ1(Pd , yd , s

∗) = Θk(P, {P̂, Ŷ }, s∗).

Finally, reducing weights can only decrease the optimal evacuation time so

Θk
opt(P, s∗

B) ≤ Θk
opt(P, s∗)

(ii) xm+1 ≤ xt < yd : Again, for such t , set wt (s∗
B) = w−

t . After this transforma-
tion, for i ≥ m + 1, g(Pd , yd , s∗

B : i) ≤ g(Pd , yd , s∗ : i) while for i < m + 1,
g(Pd , yd , s∗

B : i) = g(Pd , yd , s∗ : i) so, by the choice of m,

ΘL(Pd , yd , s
∗) = ΘL(Pd , yd , s

∗
B)

and still Θ1(Pd , yd , s∗
B) = Θ1(Pd , yd , s). By the same argument as in (i),

Θk
(
P, {P̂, Ŷ }, s∗

B

)
= Θk

(
P, {P̂, Ŷ }, s∗) .

and

Θk
opt(P, s∗

B) ≤ Θk
opt(P, s∗)

(iii) xld ≤ xt ≤ xm : For such t , set wt (s∗
B) = w+

t . Then, simple calculation yields

ΘL(Pd , yd , s
∗
B) = ΘL(Pd , yd , s

∗) + (
w+
t − wt (s

∗)
)
/c

123



3544 Algorithmica (2019) 81:3534–3585

Fig. 5 Illustration of
Definition 6. Scenario s∗B (t1, t2)

has w+
i entries for t1 ≤ i < t2

and w−
i entries everywhere else

where m remains the index that maximizes the value in Eq. 9. Thus,

Θ1(Pd , yd , s
∗
B) = ΘL(Pd , yd , s

∗
B) = ΘL(Pd , yd , s

∗) + (
w+
t − wt (s

∗)
)
/c

so, again, by the definition of dominant partition,

Θk
(
P, {P̂, Ŷ }, s∗

B

)
= Θk(P, {P̂, Ŷ }, s∗) + (

w+
t − wt (s

∗)
)
/c.

Also, increasing any one weight by can only increase the evacuation time by at
most the amount of the increase divided by c , so

Θk
opt(P, s∗

B) ≤ Θk
opt(P, s∗) + (

w+
t − wt (s

∗)
)
/c

We have thus seen, for t in any of case (i), (ii), (iii),

R({P̂, Ŷ }, s∗
B) = Θk

(
P, {P̂, Ŷ }, s∗

B

)
− Θk

opt(P, s∗
B)

≥ Θk(P, {P̂, Ŷ }, s∗) − Θk
opt(P, s∗)

= R({P̂, Ŷ }, s∗).

s∗ is a worst case scenario with associated dominant partition Pd , so s∗
B must be one

as well.
The discussion above considered changing only one wt . Repeating this process for

every t ∈ [xld , xrd ] yields a left dominant scenario, s∗
B for Pd . The case in which

the right evacuation time dominates is totally symmetric and creates a right-dominant
scenario for Pd .

We therefore can always create a worst case scenario in Sd
L

⋃Sd
R . �	

Definition 6 See Fig. 5. For integers t1, t2 satisfying 0 ≤ t1 ≤ t2 ≤ n define2 s∗
B(t1, t2)

as satisfying

wi (s
∗
B(t1, t2)) :=

⎧
⎪⎨

⎪⎩

w−
i if 0 ≤ i < t1,

w+
i if t1 ≤ i < t2

w−
i if t2 ≤ i ≤ n

2 Note that there is some redundancy in this definition in that, ∀t , s∗B (t, t) = s∗B (0, 0).
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and set

S∗ := {
s∗
B(t1, t2) : t1, t2, such that 0 ≤ t1 ≤ t2 ≤ n + 1

}

Note that all scenarios of the type described by Theorem 1 are in S∗. Thus

Property 2 Let {P̂, Ŷ } be some evacuation protocol. Then there exists s∗
B ∈ S∗ that is

a worst-case scenario for {P̂, Ŷ }. Note that |S∗| = O(n2).

If the P̂ is known in advance, there is a stronger property.

Definition 7 Consider partition Plr = [xl , xr ]. Set

S∗ (Plr ) :=
r⋃

t=l

{
s∗
B(l, t), s∗

B(t, r + 1)
}
.

Note that S∗ (Plr ) ⊆ S∗ and |S∗ (Plr )| = O(xr − xl + 1).

Then Theorem 1 directly implies

Property 3 Let P̂ = {P1, . . . , Pk} fix Ŷ and suppose there exists some worst-case
scenario s∗ for {P̂, Ŷ } with associated dominant partition Pd . Then there exists a
scenario s∗

B ∈ S∗ (Pd) that is also a worst case scenario for {P̂, Ŷ } with dominant
partition Pd .

Next

Definition 8 For P̂ = {P1, . . . , Pk} set

S∗ (
P̂

)
:=

⋃

1≤i≤k

S∗(Pi ).

Note that S∗
(
P̂

)
⊆ S∗ and

∣∣
∣S∗

(
P̂

)∣∣
∣ = ∑

i O(xr − xl + 1) = O(n).

Since some partition must be dominant this yields

Property 4 The set S∗
(
P̂

)
includes some worst case scenario for {P̂, Ŷ }.

4 Local Costs of Partitions

This section uses the properties derived in Sect. 3 to associate local costswith partitions
and then show that the minmax regret value is the maximum of these local costs. This
will enable designing efficient algorithms.
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4.1 Local Partition Costs

Theorem 2 Let l ≤ r , set Plr = [xl , xr ] and let s ∈ S be any scenario. Define

∀y ∈ Plr , Rlr (y, s) := Θ1(Plr , y, s) − Θk
opt(P, s), (11)

∀y ∈ Plr , Rlr (y) := max
s∈S∗ {Rlr (y, s)} , (12)

and

Rlr := min
xl≤y≤xr

Rlr (y). (13)

Then the minmax regret value for P satisfies

Rk
max(P) = min

P̂
max
1≤i≤k

{
Rli ri

}
(14)

where we denote P̂ by P̂ = {P1, . . . , Pk} with Pi = [xli , xri ]
Proof The regret associated with {P̂, Ŷ } under scenario s ∈ S is

R
(
{P̂, Ŷ }, s

)
= Θk(P, {P̂, Ŷ }, s) − Θk

opt(P, s) (from Eq. 5)

= max
1≤i≤k

{
Θ1(Pi , yi , s)

}
− Θk

opt(P, s) (from Eq. 2)

= max
1≤i≤k

{
Θ1(Pi , yi , s) − Θk

opt(P, s)
}

= max
1≤i≤k

{
Rli ri (yi , s)

}
. (15)

The maximum in Eq. 15 is achieved when i = d, where Pd is the dominant partition.
The max-regret for {P̂, Ŷ } can be written as:

Rmax({P̂, Ŷ }) = max
s∈S

{
R({P̂, Ŷ }, s)

}
(from Eq. 6)

= max
s∈S∗

{
R({P̂, Ŷ }, s)

}
(from Prop 2)

= max
s∈S∗ max

1≤i≤k

{
Rli ri (yi , s)

}
(from Eq. 15)

= max
1≤i≤k

max
s∈S∗

{
Rli ri (yi , s)

}

= max
1≤i≤k

{
Rli ri (yi )

}
(from Eq. 12) (16)
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Table 1 The definitions of Rlr , R̄lr and R′
lr and associated d, d̄ and d ′ for given P̂

Rlr (y) := max
s∈S∗ Rlr (y, s) Rlr := min

xl≤y≤xr
Rlr (y) d(P̂) := argmax

1≤i≤k
Rli ri

R̄lr := max{Rlr , 0} d̄(P̂) := argmax
1≤i≤k

R̄li ri

R′
lr (y) := max

s∈S∗([xl ,xr ])
Rlr (y, s) R′

lr := min
xl≤y≤xr

R′
lr (y) d ′(P̂) := argmax

1≤i≤k
R′
li ri

S∗([xl , xr ]) ⊆ S∗. Lemma 6 shows that d = d ′. Furthermore, if d > 0 then d = d ′ = d̄

To complete the proof note that the minmax regret value can be written as:

Rk
max(P) = min

{P̂,Ŷ }
Rmax({P̂, Ŷ })

= min
{P̂,Ŷ }

max
1≤i≤k

{
Rli ri (yi )

}
(from Eq. 16)

= min
P̂

{
min

1≤i≤k : yi∈Pi

{
max
1≤i≤k

{
Rli ri (yi )

}}}

= min
P̂

{
max
1≤i≤k

{
min

1≤i≤k : yi∈Pi
Rli ri (yi )

}}
(17)

= min
P̂

max
1≤i≤k

{
Rli ri

}
. (18)

�	
Theorem 2 alone would permit developing a polynomial time Dynamic Program-

ming algorithm for evaluating Rk
max(P). The remainder of this subsection defines two

related quantities R′
lr and R̄lr , that permit developing faster algorithms. These are

listed in Table 1 for comparison.

Definition 9 Let l ≤ r . Set

(a) ∀y ∈ Plr , R′
lr (y) := max

s∈S∗(Plr )
{Rlr (y, s)} ,

R′
lr := min

xl≤y≤xr
R′
lr (y). (19)

(b) R̄lr := max{Rlr , 0} (20)

We now prove that Eq. 14 will remain valid if Rlr is replaced by R′
lr or R̄lr . The

final results that will be used for algorithmic development are stated in Lemma 6 and
Theorem 3.

Definition 10 Let P̂ = {P1, P2, . . . , Pk}. Set

d
(
P̂

)
:= arg max

1≤i≤k
Rli ri , d ′ (P̂

)
:= arg max

1≤i≤k
R′
lri ,

d̄
(
P̂

)
:= arg max

1≤i≤k
R̄lri .

123



3548 Algorithmica (2019) 81:3534–3585

Lemma 2 Let d = d
(
P̂

)
where P̂ = {P1, P2, . . . , Pk}. Then

Rldrd = max
1≤i≤k

{
Rli ri

} ≥ 0. (21)

Proof From Property 1, regret is always nonnegative, so Rk
max(P) ≥ 0. Thus, from

Theorem 2,

0 ≤ Rk
max(P) = min

P̂
max
1≤i≤k

{
Rlri

}
.

In particular, for any fixed P̂ satisfying d = d
(
P̂

)
, Eq. 21 holds. �	

Lemma 3

∀i, R̄ii = 0 (22)

Proof If y ∈ Pii then y = xi . Since for every scenario s, Θ1(Pii , xi , s) = 0,

Rii = max
s∈S∗

(
Θ1(Pii , xii , s) − Θk

opt(P, s)
)

= max
s∈S∗

(
−Θk

opt(P, s)
)

≤ 0,

so R̄ii = max{0, Rii } = 0. �	
Lemma 4

∀l ≤ r , R′
lr ≤ Rlr .

Proof Recall that S∗(Plr ) ⊂ S∗, so

∀y ∈ Plr , R′
lr (y) = max

s∈S∗(Plr )
Rlr (y, s) ≤ max

s∈S∗ Rlr (y, s) = Rlr (y).

Thus

R′
lr = min

xl≤y≤xr
R′
lr (y) ≤ min

xl≤y≤xr
Rlr (y) = Rlr . (23)

�	
Lemma 5 Let d = d

(
P̂

)
where P̂ = {P1, P2, . . . , Pk}. Then

∀y ∈ Pd , Rld ,rd (y) = R′
ld ,rd (y), (24)

and

Rld ,rd = R′
ld ,rd . (25)
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Proof For any y ∈ Pd set yd = y and for i 
= d set yi ∈ [
xl , xri

]
to be a sink that

achieves Rli ,ri = Rli ,ri (yi ). Fix Ŷ = {y1, y2, . . . , yk}.
Set α = Rld ,rd . By the definition of d,

∀i < d, max
s∈S∗ Rli ri (yi , s) = Rli ri (yi ) = Rli ri < α

and

∀i > d, max
s∈S∗ Rli ri (yi , s) = Rli ri (yi ) = Rli ri ≤ α.

Furthermore

max
s∈S∗ Rldrd (yd , s) = Rldrd (yd) ≥ min

ld≤yd≤rd
Rldrd (yd) = α.

Let s′ ∈ S∗ be such that Rldrd (yd , s
′) = Rldrd (yd). Property 2 and the statements

above imply that s′ is a worst case scenario for {P̂, Ŷ } and Pd is the dominant partition
for {P̂, Ŷ } under scenario s′ (following Definition 2). Property 3 then implies the
existence of s∗ ∈ S∗(Pd) such that Rldrd (yd , s

∗) = Rldrd (yd , s
′). Since S∗(Pd) ⊂ S∗,

this immediately implies

R′
ld ,rd (yd) = max

s∈S∗(Pd )
Rldrd (yd , s) = max

s∈S∗ Rldrd (yd , s) = Rld ,rd (yd).

proving Eq. 24. Equation 25 follows from Eq. 24 and the definitions of Rld ,rd , R
′
ld ,rd

:

Rld ,rd = min
xld ≤y≤xrd

Rld ,rd (y) = min
xld ≤y≤xrd

R′
ld ,rd (y) = R′

ld ,rd .

�	
Lemma 6 Fix P̂ = {P1, P2, . . . , Pk}with Pi = [xli , xri ]. Set d = d

(
P̂

)
, d ′ = d ′

(
P̂

)

and d̄ = d̄
(
P̂

)
. Then

1. Rldrd = R′
ld′rd′ = R̄ld̄ rd̄ .

2. If Rldrd = 0, then

– d = d ′
– ∀i, R̄li ri = 0, so d̄ = 1.

3. If Rldrd > 0, then d = d ′ = d̄ .

Proof From Lemma 2,

max
1≤i≤k

{
R̄li ri

} = max
1≤i≤k

{
max{Rli ri , 0}

} = max

{
max
1≤i≤k

{
Rli ri

}
, 0

}
= max

1≤i≤k

{
Rli ri

}

and thus Rldrd = R̄ld̄ rd̄ .
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From Lemma 5, Rldrd = R′
ldrd

. From Lemma 4 and the definition of d ′,

Rldrd = R′
ldrd ≤ R′

ld′rd′ = max
1≤i≤k

{
R′
li ri

} ≤ max
1≤i≤k

{
Rli ri

} = Rldrd . (26)

This implies that R′
ldrd

= R′
ld′rd′ = Rldrd completing the proof of (1).

Furthermore, by the definition of d ′, d ′ ≤ d. Suppose that d ′ < d. Then, again
from Lemma 4, this would imply

Rldrd = R′
ld′rd′ ≤ Rld′rd′ ,

contradicting the definition of d. Thus d = d ′,
If Rldrd = 0 then, from (1), R̄ld̄ rd̄ = 0. (2) then follows from the fact that

∀i, 0 ≤ R̄li ri ≤ R̄ld̄ rd̄ = 0.

If 0 < Rldrd , then, from (1)

R̄ldrd = max{Rldrd , 0} = Rldrd = R̄ld̄ rd̄ .

Recall that ∀ j < d, Rl j r j < Rldrd . Thus

∀ j < d, R̄l j r j = max(0, Rli ri ) < Rldrd = R̄ld̄ rd̄

so d̄ = d. Combining with d = d ′ proves (3). �	

Combining the above proves the main result.

Theorem 3

Rk
max(P) = min

P̂
max
1≤i≤k

{
Rli ri

} = min
P̂

max
1≤i≤k

{
R̄li ri

} = min
P̂

max
1≤i≤k

{
R′
li ri

}
.

Proof Follows directly from Eq. 14 in Theorem 2 and part (1) in Lemma 6. �	

The following observation will be quite useful in removing degenerate cases.

Lemma 7 Fix P̂ = {P1, P2, , Pk} and set d = d
(
P̂

)
. If Rldrd = 0, R′

ld′rd′ = 0 or

R̄ld̄ rd̄ = 0 then Rk
max(P) = 0.

Proof This follows directly from Lemma 6 and Theorem 3. �	
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4.2 Recurrence Relations for Minmax Regret

For P̂ = {P1, P2, . . . , Pk}, the values Rli ri , R̄li ri , R
′
li ri

can be interpreted as (three

different) costs of Pi = [xli , xri ]. Solving for Rk
max(P) using Theorem 3 is then the

problem of finding the minmax cost k-partition with these Pi costs. Such partition-
ing problems can be solved in polynomial time using Dynamic Programming (DP).
We encode the corresponding DP recurrences for costs R̄lr and Rlr in the follow-
ing straightforward lemma without proof. Note that a corresponding equation also
exists for the costs Rlr but this would lead to a slower algorithm and is therefore not
presented.

Lemma 8 For 0 ≤ i ≤ j ≤ n and 1 ≤ q ≤ k set

Mq
i j :=

⎧
⎪⎨

⎪⎩

undefined if j − i < q − 1,
R̄i j if q = 1,

min
i≤t< j

max
{
R̄i t , Mq−1

(t+1) j

}
otherwise.

(27)

M ′q
i j :=

⎧
⎪⎨

⎪⎩

undefined if j − i < q − 1,
R′
i j if q = 1,

min
i≤t< j

max
{
R′
i t , M ′q−1

(t+1) j

}
otherwise.

(28)

Then

M0n = min
P̂

max
1≤i≤k

{
R̄li ri

} = Rk
max(P) = min

P̂
max
1≤i≤k

{
R′
li ri

} = M ′
0n .

If the R̄i j (R′
i j ) are precalculated, Eq. 27 (Eq. 28) defines a dynamic program for

calculating all of the Mq
i j (M

′q
i j ) in O(n3k) time.

For fixed i, j , from Definition 9(a), it is not difficult to see how to evaluate R′
i j in

O(n3) time (at least in the case when all sinks must be on vertices), thus calculating
all the R′

i j in O(n5) time. Once all R′
i j are known, Eq. 28 permits calculating M ′k

0n =
min P̂ max1≤i≤k

{
R′
li ri

}
= Rk

max(P) in O(n3k) time, giving an O(n5) algorithm.

We omit further details because we now present much faster algorithms for calcu-
lating M ′k

0n . This will be efficient for calculating Rk
max(P) for large k. Monotonicity

as introduced in the next subsection will yield a better algorithm for calculating Mk
0n .

This will be efficient for calculating Rk
max(P) for small k.

4.3 Monotonic Sequences

The following property of the Rlr will help speed up the calculations.
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Lemma 9 Let l ≤ r . Then

(a) Rlr ≤ Rl(r+1),

(b) Rlr ≤ R(l−1)r .

Intuitively, increasing the size of a subpath can not decrease its regret.

Proof We prove (a). The proof of (b) will be symmetric.
Let s be any scenario. and xl ≤ y ≤ xr . Extending Plr one vertex to the right to

create Pl(r+1) can not decrease evacuation time so

Θ1(Plr , y, s) ≤ Θ1(Pl(r+1), y, s)

and then

Rlr (y, s) = Θ1(Plr , y, s) − Θk
opt(P, s)

≤ Θ1(Pl(r+1), y, s) − Θk
opt(P, s) = Rl(r+1)(y, s).

Since this is true for every scenario s,

Rlr (y) = max
s∈S∗ Rlr (y, s) ≤ max

s∈S∗ Rl(r+1)(y, s) = Rl(r+1)(y) (29)

so

Rlr = min
xl≤y≤xr

Rlr (y) ≤ min
xl≤y≤xr

Rl(r+1)(y). (30)

Now suppose xr < y ≤ xr+1. Then, for every scenario s,

Θ1(Plr , xr , s) = ΘL(Pl(r+1), xr , s) ≤ ΘL(Pl(r+1), y, s) ≤ Θ1(Pl(r+1), y, s)

and then

Rlr (xr , s) = Θ1(Plr , xr , s) − Θk
opt(P, s)

≤ Θ1(Pl(r+1), y, s) − Θk
opt(P, s) = Rl(r+1)(y, s).

Continuing similar to above,

Rlr (xr ) = max
s∈S∗ Rlr (xr , s) ≤ max

s∈S∗ Rl(r+1)(y, s) = Rl(r+1)(y)

so

Rlr = min
xl≤y≤xr

Rlr (y) ≤ Rlr (xr ) ≤ min
xr<y≤xr+1

Rl(r+1)(y) (31)
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Combining Eqs. (30) and (31) yields

Rlr ≤ min

(
min

xl≤y≤xr
Rl(r+1)(y), min

xr<y≤xr+1
Rl(r+1)(y)

)

= min
xl≤y≤xr+1

Rl(r+1)(y) = Rl(r+1)

proving (a). As noted, the proof of (b) is totally symmetric. �	
We give this property a name and derive useful properties.

Definition 11 Let Ai j be real values defined for all 0 ≤ i ≤ j ≤ n.
Ai j ismonotonic if Aii = 0 and

∀0 ≤ i ≤ j < n, Ai j ≤ Ai( j+1) and ∀0 < i ≤ j ≤ n, Ai j ≤ A(i−1) j .

The useful properties are

Lemma 10 Let Ai j and Bi j be monotonic. For i ≤ j define

Ci j :=
{
0 if i = j
mini≤t< j max{Ait , B(t+1) j } if i < j

1. Then Ci j is monotonic.
2. For j > i set t[i, j] = min{t : i ≤ t < j and Ait ≥ B(t+1) j }.

(Note: such a t must exist because Ai( j−1) ≥ 0 = Bj j .) Then

∀i ∈ [i, j], Ait < B(t+1) j if and only if t < t[i, j], (32)

Ci j = min{Ait[i, j], Bt[i, j] j } (33)

3. ∀1 ≤ i < j < n, t[i, j] ≤ t[i, j + 1]
Proof 1. From the monotonicity of Bi j ,

∀t, i ≤ t < j, B(t+1) j ≤ B(t+1)( j+1)

so

max{Ait , B(t+1) j } ≤ max{Ait , B(t+1)( j+1)}.

From the monotonicity of Ai j and the fact Bj j = B( j+1)( j+1) = 0,

max{Ai( j−1), Bj j } = Ai( j−1) ≤ Ai j = max{Ai j , B( j+1)( j+1)}.

Thus

Ci j = min
i≤t< j

max{Ait , B(t+1) j } ≤ min
i≤t< j+1

max{Ait , B(t+1)( j+1)} = Ci( j+1).
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The proof that Ci, j ≤ C(i−1) j is symmetric.
2. If j = i + 1 then t[i, j] = i and Eqs. 32 and 33 are trivially satisfied with

Ci j = max{Aii , Bj j } = 0 = min{Aii , Bi j }.
Otherwise, j > i + 1. From the definition of t[i, j], ∀i ≤ t < t[i, j], Ait ≤
B(t+1) j . Next, by monotonicity, and the definition of t[i, j],

∀t[i, j] ≤ t < j, Ait ≥ Ait[i, j] ≥ B(t[i, j]+1) j ≥ B(t+1) j

proving Eq. 32. To prove Eq. 33 note that by monotonicity,

min
i≤t<t[i, j]max{Ait , B(t+1) j } = min

i≤t<t[i, j] B(t+1) j = Bt[i, j] j

and

min
t[i, j]≤t< j

max{Ait , B(t+1) j } = min
t[i, j]≤t< j

Ai,t = Ai,t[i, j]

3. Note that, if Ait < B(t+1) j then, by monotonicity, Ait ≤ B(t+1) j ≤ B(t+1)( j+1)
and the proof follows from part (2).

�	
Monotonic sequences are relevant because Lemmas 3 (Eq. 22) and 9 imply that the

R̄i j are monotonic and thus from Lemma 10(1)

Corollary 1 For every fixed q, 0 ≤ q ≤ k the Mq
i, j defined in Lemma 8 are monotonic.

Note For later use we note that Lemma 9 and Corollary 1 no longer hold if Rlr

is replaced by R′
lr . Thus is because, after this substitution, Eqs. 29 and 30 no

longer remain valid because S∗(Plr ) � S∗(Pl(r+1)), so it is not necessarily true that
maxs∈S∗(Plr ) Rlr (s, y) ≤ maxs∈S∗(Pl(r+1)) Rl(r+1)(s, y). Thus, the R′

lr are not neces-
sarily monotonic. This fact will have later implications in the algorithmic design.

5 2k(P, x, s) and Rij : Properties and Calculation

Equations 27 and 28 lead directly to two different dynamic programming solutions
for calculating the minmax regret; one based on R̄i j and the other on R′

i j . Using them
requires efficient calculation of Ri j and R′

i j which first requires efficient calculation

of Θk(P, s).
Earlier papers, e.g., [9,16,20,27,34], in this area have already developed techniques

for fast calculation of Θk(P, s) for fixed s. The closest to our needs is the Critical
Vertex Tree data structure of [9]. A straightforward modification of [9]’s design yields
the following:

Lemma 11 The Critical Vertex Tree (CVT) Data Structure can be built in O(n) time
and, once built, permits the following operations:

Let i ≤ j and set Pi j = [xi , x j ]. Let 0 ≤ t1 ≤ t2 ≤ n and set s = s∗
B(t1, t2) as

introduced in Definition 6. Then all of the below can be calculated in O(log n) time.
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1. ΘL(Pi j , x, s) and ΘR(Pi j , x, s) for any x ∈ Pi j .
2. Θ1(Pi j , s) and the value x∗ such that Θ1(Pi j , s) = max

{
ΘL(Pi j , x∗, s),

ΘR(Pi j , x∗, s)
}
.

3. For any α > 0, max{x ′ ∈ Pi j : ΘL(Pi j , x ′, s) ≤ α}.
4. For any x ∈ Pi j and α > 0, max{ j ′ ≤ j : ΘR

([x, x j ′ ], x, s
) ≤ α}.

Wenote that [9] defines theCriticalVertexTree for a fixed scenario s, provides theO(n)

construction algorithm, proves point (1) and gives an O(log2 n) (and not O(log n))
algorithm for (2). In the “Appendix” (Sect. 8) we describe the modifications required
to extend their construction to yield the full strength of Lemma 11.

The remainder of this section, though, assumes the correctness of Lemma 11 and
describes how it permits fast construction of Ri j and R′

i j . The first step is to show that

it permits fast calculation of Θk
opt(P, s) for s ∈ S∗.

For simplification, the derivations often use the following substitution.

Definition 12 Let s be fixed. For i ≤ j , define

Aq
i j := Θ

q
opt(Pi j , s).

Lemma 12 For fixed s and all q, Aq
i j is a monotonic sequence.

Proof Adding a vertex to a subpath can only increase its 1-sink evacuation time so
A1
i j ≤ A1

i( j+1) and A1
(i−1) j ≤ A1

i j . Since A1
i i = 0, the sequence A1

i j is monotonic.

The proof that Aq
i j is monotonic will be by induction on q. Assume that Aq−1

i j is
monotonic (as has just been shown for q = 2). Now note that

Aq
i j = Θ

q
opt(Pi j , s) = min

i≤t< j
max{Θ1

opt(Pit , s),Θ
q−1
opt (P(t+1) j , s)}

= min
i≤t< j

max{A1
i t , Aq−1

(t+1) j },

so by Lemma 10, Aq
i j is also monotonic. �	

The algorithm for calculating the optimum value Θ
q
opt(Pi j , s) will utilize the fol-

lowing feasibility test as a subroutine.

Lemma 13 Assume i ≤ j , α ≥ 0 and s = s∗
B(t1, t2). Define

Feasible(q : i, j, α, s) :=
{
TRUE, if Θq

opt(Pi j , s) ≤ α,

FALSE, if Θq
opt(Pi j , s) > α.

Assuming a pre-constructed CVT, Feasible(q : i, j, α, s) can be calculated in
O(q log n) time.

Proof Note that if i = j , then Aq
i j = Θ1

opt(Pii , s) = 0, so Feasible(q : i, j, α, s) =
TRUE.
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If i < j and q = 1 :
A1
i j = Θ1

opt(Pi j , s) ≤ α can be checked in O(log n) time by using Lemma 11 to

directly calculate Θ1
opt(Pi j , s).

If i < j and q > 1 :
Set

t := max{t ′ : t ′ ≤ j and Θ1
opt(Pit ′ , s) ≤ α}.

This can be calculated in O(log n) time by first using Lemma 11(3) to find

x ′′ = max{x ′ ∈ Pi j : ΘL(Pi j , x
′, s) ≤ α}

and then using Lemma 11(4) to find

t = max{ j ′ : j ′ ≤ j and ΘR(Pi j ′ , x
′′, s) ≤ α}.

If t = j then

Aq
it = Θ

q
opt(Pit , s) ≤ Θ1

opt(Pit , s) ≤ α

so Feasible(q : i, j, α, s) = TRUE. If t < j , then A1
i t ≤ α and A1

i(t+1) > α. From

the monotonicity of Aq
i, j in Lemma 12,

Aq
i j ≤ α if and only if Aq−1

(t+1) j ≤ α.

So, if t < j ,

Feasible(q : i, j, α, s) = Feasible(q − 1 : t + 1, j, α, s). (34)

Thus Feasible(q : i, j, α, s) can be implemented via a recursive procedure that
does O(log n) work to calculate t and then calls Feasible(q − 1 : t + 1, j, α, s).
When q = 1 the evaluation can be done in O(log n) time, so the full evaluation of
Feasible(q : i, j, α, s) can be implemented in O(q log n) time as required. �	
Lemma 14 Let s = s∗

B(t1, t2) and i < j . Assuming a pre-constructed CVT,
Θk

opt(Pi j , s) can be calculated in O(k2 log2 n) time.

Proof Let q ≤ k. Set

tq [i, j] = min{t : i ≤ t < j and A1
i t ≥ Aq−1

(t+1) j }.

Lemmas 10 and 12 guarantee that, if t ∈ [i, j] then

i ≤ t < tq [i, j] ⇔ A1
i t < Aq−1

(t+1) j , (35)
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and

Aq
i j = min

{
A1
i tq [i, j], Aq−1

tq [i, j] j
}

. (36)

Equation 35 implies that tq [i, j] can be found via binary search using O(log n)

queries of the form (t < tq [i, j]?) which are equivalent to the queries (A1
i t <

Aq−1
(t+1) j?). This can be implemented by

1. Calculating α = A1
i t = Θ1

opt(Pit , s) in O(log n) time using Lemma 11 (1);

2. then noting that A1
i t < Aq−1

(t+1) j iff Feasible(q − 1 : t + 1, j, α, s) = FALSE.

From Lemma 13, the time for one query is O(q log n) so the total binary search time
to find tq [i, j] is O(q log2 n). The full algorithm3 to calculate Aq

i j is then

1. If q = 1, calculate A1
i j in O(log n) time using Lemma 11 (1)

2. Else if q > 1
3. Find tq [i, j] in O(q log2 n) time
4. Calculate A1

i tq [i, j] in O(log n) time using Lemma 11 (1)

5. Recursively calculate Aq−1
tq [i, j] j

6. Return min
{
A1
i tq [i, j], A

q−1
tq [i, j] j

}
.

Let Fq(n) be the time required to calculate Aq
i j where n = j− i+1. The recurrence

relation is then

Fq(n) =
{
O(log n) if q = 1,
Fq−1(n) + O(q log2 n) if q > 1,

which solves out to Fk(n) = O(k2 log2 n). �	

5.1 Evacuation Costs for Sinks not onVertices

The following simple observation about the linearity of evacuation as the sink moves
along an edge between two vertices wil be needed. It follows directly from the evac-
uation cost formulas in Eqs. 1 and 2:

Lemma 15 Suppose i < k ≤ j and x ∈ P(k−1)k . For any scenario s, if xk−1 < x ≤ xk,
then

ΘL(Pi j , x, s) = ΘL(Pik, xk, s) − τ(xk − x) = ΘL(Pik, s) − τ(xk − x)

and if xk−1 ≤ x < xk ,

3 Without delving into details we note that the algorithm presented can alternatively be derived as a param-
eteric search [29] implementation of binary search using the feasibility test of Lemma 13 to implement the
binary search comparison.
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ΘR(Pi j , x, s) = ΘR(P(k−1) j , xk−1, s) − τ(x − xk−1)

= ΘR(P(k−1) j , s) − τ(x − xk−1).

ΘL(Pi j , xk, s) is the time required for the last piece of flow from within Pi(k−1) to
reach xk . The intuition for the first equation is that no congestion can occur inside an
edge so the last flow reached x exactly τ(xk − x) before it reached xk . The intuition
for the second equation is similar.

5.2 Strict Unimodality and Its Applications

Definition 13 Let f (x) be a function on a real interval I = [y, z]. f (x) is strictly
unimodal if there exists some x∗ ∈ I such that f (x) is monotonically decreasing
in [x, x∗] and monotonically increasing in [x∗, y]. It is not necessary that f (x) be
continuous. Note that x∗ is the unique minimum location of f (x).

Strictly unimodal functions arise quite naturally. The proof of the following lemma
is straightforward and therefore omitted.

Lemma 16 Let f (x), g(x) be, respectively, monotonically increasing and decreasing
functions on I . Then h(x) = max { f (x), g(x)} is a strictly unimodal function on I .

Finally, the maximum of strictly unimodal functions is easily shown to be strictly
unimodal.

Lemma 17 If f1(x) and f2(x) are both strictly unimodal on I then f (x) =
max { f1(x), f2(x)} is also strictly unimodal on I .

More generally, if fi (x), i = 1, 2, . . . , j are all strictly unimodal on I then f (x) =
max1≤i≤ j fi (x) is also strictly unimodal on I .

Strictly unimodal functions arise in our problem due to the following:

Lemma 18 Let i ≤ j and s ∈ S. Then

1. Θ1(P, x, s) is a strictly unimodal function on P as a function of x.
2. Ri j (y, s) is a strictly unimodal function on Pi j as a function of y.
3. Ri j (y) is a strictly unimodal function on Pi j as a function of y.
4. R′

i j (y) is a strictly unimodal function on Pi j as a function of y.

Proof 1. This follows directly from the definition

Θ1(P, x, s) = max {ΘL(P, x, s),ΘR(P, x, s)} , (37)

ΘL(P, x, s) being monotonically increasing in x , ΘR(P, x, s) being monotoni-
cally increasing in x and Lemma 16.

2. From the definition

Ri j (s, y) = Θ1(Pi j , y, s) − Θk
opt(P, s).

Part (1) states that Θ1(Pi j , y, s) is strictly unimodal. Subtracting a constant from
a strictly unimodal function leaves another strictly unimodal function.
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3. Apply Part (2) and Lemma 17 to

Ri j (y) = max
s∈S∗

{
Ri j (y, s)

}
.

4. Again apply Part (2) and Lemma 17, but this time to

R′
i j (y) = max

s∈S∗(Pi j )

{
Ri j (y, s)

}
.

�	
Binary searching on Strictly Unimodal functions is known to be “easy”.

Lemma 19 Let f (x) be a strictly unimodal function defined in [x, y] and x∗ the loca-
tion of its unique minimum value. Let x = x1 < x2 < . . . xn = y be a sequence of
points and g(n) the time required to evaluate g(xi ) for any i . Then, in O(g(n) log n)

time, binary search can determine the index

t = max{i : 1 ≤ i ≤ n, and xi ≤ x∗}

Note that if t = n then x∗ = xn = y. Otherwise xt ≤ x∗ < xt+1.

This immediately leads to the major technical construction lemma

Lemma 20 Let i ≤ j be integers, s ∈ S∗ a scenario, x ∈ Pi j ,

α(n) = Time needed to evaluateΘk
opt(P, s),

β(i, j, s) = Time needed to evaluateΘL(Pi j , x, s) andΘR(Pi j , x, s).

Recall that

(a) Ri j = min
xi≤y≤x j

Ri j (y) and (b) R′
i j = min

xi≤y≤x j
R′
i j (y). (38)

Then
(a) Ri j and the y at which the minimum is achieved in Eq. 38 (a) can be evaluated in
time

O
(
n2α(n) + n2β(i, j, s) log n

)
.

(b) R′
i j and the y at which the minimum is achieved in Eq. 38 (b) can be evaluated in

time

O (( j − i + 1)α(n) + ( j − i + 1)β(i, j, s) log n) .
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Proof (a) Use O(n2α(n)) time to calculate Θk
opt(P, s) for all the O(n2) scenarios

s ∈ S∗. Store these O(n2) values so that they can be retrieved in O(1) time.
For fixed s and y, calculating

Ri j (y, s) = max
{
ΘL(Pi j , y, s),ΘR(Pi j , y, s)

} − Θk
opt(P, s)

only requires an additional O(β(i, j, s)) time.
Ri j (y) can then be evaluated in O(n2β(i, j, s)) time by evaluating Ri j (y, s) at each

of the O(n2) s ∈ S∗ and returning the maximum. Call such a calculation of Ri j (y) a
“query”.

Since Ri j (y) is strictly unimodal as a function of y, there exists a unique location
x∗ at which it achieves its minimum.

Using O(log n) queries, Lemma 19 finds either that x∗ = x j or returns a t such
that x∗ ∈ [xt , xt+1).

In the first case, the argument above permits calculating Ri j (x∗) = Ri j (x j ) in
O(n2β(i, j, s)) time.

In the secondcase, the sameargument permits calculating Ri j (xt ) inO(n2β(i, j, s))
time.

If x∗ 
= xt then, x∗ = xt + δ for some δ > 0 and, from Lemma 15,

ΘR(Pi j , xt + δ, s) = ΘR(Pi j , xt , s) − τ(x∗ − xt )

ΘL(Pi j , xt + δ, s) = ΘL(Pi j , xt+1, s) − τ(xt+1 − x∗)

Plugging in the definitions and collecting terms yields, ∀x ∈ (xt , xt+1),

Ri j (x, s) = max
{
ΘR(Pi j , xt , s) − Θk

opt(P, s) − τ(x − xt ),

ΘR(Pi j , xt+1, s) − Θk
opt(P, s) − τ(xt+1 − x)

}

= max
{
As − τ x, Bs + τ x

}

where As and Bs are appropriately defined constants. Thus ∀x ∈ (xt , xt+1),

Ri j (x) = max
s∈S∗

{
Ri j (x, s)

}

= max
s∈S∗ max

{
As − τ x, Bs + τ x

}

= max

{
max
s∈S∗{As − τ x}, max

s∈S∗{Bs + τ x}
}

= max

{(
max
s∈S∗ As

)
− τ x,

(
max
s∈S∗ Bs

)
+ τ x

}

= max {A − τ x, B + τ x}
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where A = maxs∈S∗ As , B = maxs∈S∗ Bs . If the As, Bs and thus the A, B were known
then, by linearity, finding the unique x∗ ∈ [xt , xt+1) such that

Ri, j (x
∗) = min

x∈[xt ,xt+1)
Ri j (x) = min

(
Ri j (xt ), min

x∈(xt ,xt+1)
Ri j (x)

)

needs only O(1) time. Since As and Bs can be calculated in a further O(|S∗|(α(n) +
β(i, j, s))) time where |S∗| = O(n2), the proof is complete.

(b) Start by spending O(( j − i + 1)α(n)) time calculating Θk
opt(P, s) for all the

O(( j−i+1)) scenarios s ∈ S∗(Pi j ). The evaluation of R′
i j is exactly the same as that of

R′
i j in (a) except that s ∈ S∗ is replaced by s ∈ S∗(Pi j ). Since |S∗(Pi j )| = O( j−i+1)

this would just replace every n2 in the analysis with | j − i + 1| which is the claimed
result. �	

5.3 Quick Construction of Rij and R′
ij

The tools just developed provide quick proofs of the following two lemmas.

Lemma 21 Assume a pre-constructed CVT. For any i < j , Ri j can be evaluated in
O(n2k2 log2 n) time and can be evaluated in R′

i j in O(| j − i + 1|k2 log2 n) time.

Proof Lemma 11 immediately provides that ∀s ∈ S∗, β(i, j, s) = O(log n).
Lemma 14 gives α(n) = O(k2 log2 n).
Plugging back into Lemma 20 completes the proof. �	

Lemma 22 All O(n2) R′
i j can be constructed in O(n3 log n) total time.

Proof First use O(n) time to construct the CVT.
Next calculate Θk

opt(P, s) for each of the O(n2) s ∈ S∗. As previously men-

tioned, [7] describes how to calculate one Θk
opt(P, s) in O(n log n) time so this takes

O(n3 log n) time. Store the values in an array so each can be accessed in O(1) time.
For fixed i, j , Lemma 11 permits calculating ΘL(Pi j , x j , s) and ΘR(Pi j , xi , s) in

O(log n) time. Use O(n2 log n) time4 to calculate these for all pairs i, j and then store
the O(n2) values in an array so that they can be accessed in O(1) time.

Then apply Lemma 20 with α(n) = O(1) and β(i, j, s) = O(1) to see that we can
calculate R′

i j in O(| j − i + 1| log n) = O(n log n) time. Thus, all O(n2) R′
i j can be

calculated in O(n3 log n) time. �	

6 AlgorithmDesign

The tools developed now permit designing efficient algorithms for calculating the
minmax regret value Rk

max(P) and the associated {P̂∗, Ŷ ∗} that achieve that value.
4 We note that a more delicate algorithm could actually calculate all O(n2) values in O(n2) time from
scratch. That would not improve the overall running time, though, so we do not provide details.
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Section 6.1 provides a simple dynamic programming algorithm based on Eq. 27
and R′

i j that runs in O(n3 log n) time, independent of k.
Section 6.2 combines Eq. 28 and the monotonicity of the Ri j to develop a

O(n2k2 logk+1 n) time nested binary-search algorithm.
If the R′

i j were also monotonic, then directly replacing the Ri j in Sect. 6.2 with R′
i j

would immediately lead to an improved O(nk2 logk+1 n) algorithm. Unfortunately,
this is not necessarily true, so that approach fails. The relationship between the Ri j

and R′
i j derived in Lemma 6, though, will permit modifying the algorithm in Sect. 6.2

to run in O(nk2 logk+1 n) by simulating sequences of calls to Ri j with calls to R′
i j .

This modification is first illustrated for the simpler k = 2 case in Sect. 6.3 and then
generalized to all k in Sect. 6.4.

The algorithm for k = 2 runs in O(n log3 n), improving the previously best known
O(n log4 n) algorithm of [9]. To put this into context we note that the algorithm of
[9] was actually based on the properties in Sects. 3 and 4 as quoted from an unpub-
lished earlier version [2] of this paper combined with their earlier version of the CVT.
Unwinding [9]’s algorithm, it can be seen that the O(log n) improvement for the k = 2
case primarily comes from the O(log n) improvement to theCVT in our Lemma11 (2).

6.1 A Simple Dynamic Program

For q = 0, 1, . . . , k set M ′(q : i) := M ′q
in as defined in Lemma 8. Then

M ′(q : i) =

⎧
⎪⎨

⎪⎩

undefined if q > 1 and n − i < q − 1
R′
in if q = 1
min
i≤t<n

max
{
R′
i t , M

′(q − 1 : t + 1)
}

otherwise
(39)

From Theorem 3, M ′(k : 0) = M ′k
0n = Rk

max(P). Use Lemma 22 to calculate all of
the R′

i, j values in O(n3 log n) time, and then DP Eq. 39 to fill in all of the M ′(q : i)
table entries in O(n2k) time (O(n) time per entry) leading to

Theorem 4 For all k ≤ n,

Rk
max(P) = min

{P̂,Ŷ }
Rmax({P̂, Ŷ }) = M ′k

0n

can be calculated in O(n3 log n) time.

Note that this algorithm actually calculates the values Rk
max(P) for all k ≤ n, not just

for one specific k. Also, the dynamic program can be unwound using backtracking
to find the {P̂∗, Ŷ ∗} that achieves the minimum value and the worst case scenario
associated with it.
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6.2 A First Binary Search Based Algorithm

For q = 0, 1, . . . , k, set M(q : i) := Mq
in as defined in Eq. 28. Then

M(q : i) =

⎧
⎪⎨

⎪⎩

undefined if q > 1 and n − i < q − 1
R̄ jn if q = 1
min
i≤t<n

max
{
R̄i t , M(q − 1 : t + 1

}
otherwise

(40)

Using Theorem 3 and Lemma 8, our goal is to calculate M(k : 0) = Mk
0n = Rk

max(P).
This will be sped up by the fact (Corollary 1) that the Mq

i j are monotonic.
From Lemma 10 and Corollary 1

Mq
in = min

i≤t<n
max

{
R̄i t , Mq−1

(t+1)n

}
= min

{
R̄i tq [i,n], Mq−1

tq [i,n]n
}

(41)

where

tq [i, n] = min{t : i ≤ t < n andRit ≥ Mq−1
(t+1)n} (42)

and tq [i, n] satisfies

∀t ∈ [i, n], R̄i t < Mq−1
(t+1)n if and only if t < tq [i, n]. (43)

The algorithm binary-searches to find tq [i, n] and then compares the two possibil-
ities on the right hand side of Eq. 41 to find the correct answer.

To formalize this idea, for �q , uq satisfying i ≤ �q ≤ uq < n, define

M(q : i, �q , uq) := min
�q≤t≤uq

max
{
R̄i t , Mq−1

(t+1)n

}
. (44)

Definition 14 The parameters of M(q : i, �q , uq) satisfy the sandwich condition if
�q ≤ tq [i, n] ≤ uq .

If M(q : i, �q , uq) satisfies the sandwich condition then, from Eqs. 41, 42, 43,

M(q : i, �q , uq) = min
�q≤t≤uq

max
{
R̄i t , Mq−1

(t+1)n

}
= min

{
R̄i tq [i,n], Mq−1

tq [i,n]n
}

= Mq
in,

leading to

Property 5 If M(q : i, �q , uq) satisfies the sandwich condition then

M(q : i, �q , uq) = M(q : i) = Mq
in .

Note that i ≤ tq [i, n] < n, so

Property 6 ∀ i, q, M(q : i, i, n − 1) satisfies the sandwich condition.
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Fig. 6 BIN1—the first iterated binary search algorithm. Calling M(k : 0, 0, n − 1) returns the correct
answer Mk

0n = Rk
max(P)

This fact will be used often below. As a special case, Property 6 implies

min
{P̂,Ŷ }

Rmax({P̂, Ŷ }) = Mk
0n = M(k : 0, 0, n − 1).

BIN1, a recursive algorithm for evaluating M(q : i, �q , uq) satisfying the sandwich
condition, is presented in Fig. 6. Calling M(k : 0, 0, n − 1) returns the final solution.
Without providing details, we note that BIN1 can be easily modified to find the {P̂, Ŷ }
that achieves the minimum and the worst case scenario associated with it. To prove
correctness of BIN1 we first show that it terminates, then that all recursive calls satisfy
the sandwich condition and, finally, that if the calls satisfy the sandwich condition
they terminate with the correct solution.

First note that this algorithm always terminates because all recursive calls from
M(q : i, �q , uq) either decrement q or reduce uq − �q .

Next note that if the parameters of a M(q : i, �q , uq) call satisfies the sandwich
condition then all of the recursive calls it makes satisfy the condition as well. For the
calls on lines 2(b)(A) and 2(c)(A) this follows from Property 6. For cases 1(c) and 2(c)
the sandwich condition imposes R̄i�q ≤ M̄q−1

(�q+1)n . By setting m to be the midpoint

between �q and uq and checking whether or not R̄im ≤ M̄q−1
(m+1)n monotonicity implies

whether tq [i, n] is to the left or right of m and BIN1 makes a recursive call in the
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Fig. 7 The diagram illustrates Cases (c) and (b) in Algorithm BIN1. The sandwich condition guarantees

that tq [i, n] ∈ [�q , uq ], the crosshatched region in (i). BIN1 tests whether R̄im ≥ M̄q−1
(m+1)n and halves

the crosshatched region, recursing to the left or right appropriately. The recursion terminates when t̄ =
tq [i, n] = �q = uq . These are subfigures (ii) and (iii). In (ii) R̄i t̄ ≥ Mq−1

(t̄+1)n while in (iii) R̄i t̄ < Mq−1
(t̄+1)n .

BIN1 returns the minimum of R̄i t̄ and Mq−1
(t̄+1)n as in case (b) in the algorithm. Case (a) of BIN1 (not

pictured) is the degenerate situation tq [i, n] = �q = uq = i which forces R̄i t̄ = Mq−1
(t̄+1)n = 0 and permits

terminating the algorithm

appropriate half range containing tq [i, n], maintaining the sandwich condition. Thus
the recursive calls on lines 1(c)(A), 1(c)(B), 2(c)(B) and 2(c)(C) all also satisfy the
sandwich condition.

Finally, for correctness, note from the sandwich condition, (41) and (42)

– if �q = uq = i , then 0 = R̄ii ≥ Mq−1
(i+1)n so Mq

in = 0

– if �q = uq 
= i , then tq [i, n] = �q and Mq
in = min{R̄i�q , M

q−1
�qn

}.
These are subcases (a) and (b) in cases (1) and (2). Thus the algorithm is cor-
rect when �q = uq . As noted above, when �q < uq , i.e., subcase (c) in both
cases, the algorithm recurses by making a correct call that maintains the sand-
wich condition. The correctness of the algorithm then follows from simple induction
(Fig. 7).

Now, let f (n) be the worst case time required to evaluate a single value
Ri, j (and thus R̄i j ) and Fq(m) be the worst case time BIN1 requires to cal-
culate M(q : i, �q , uq) when uq − �q < m. Working through the code
yields

Fq (m) ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 f (n) + O(1) if q = 2, m = 1

F2
(
�m/2�

)
+ 2 f (n) + O(1) if q = 2, m > 1

Fq−1(n) + f (n) + O(1) if q > 2, m = 1

Fq
(
�m/2�

)
+ Fq−1(n) + f (n) + O(1) if q > 2, m > 1
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This is a very standard multi-dimensional divide-and-conquer recurrence (see, e.g.,
[6]) which evaluates out to Fq(n) = O( f (n) logk−1 n). Plugging in Lemma 21 imme-
diately proves

Theorem 5

min
{P̂,Ŷ }

Rmax({P̂, Ŷ }) = Mk
0n

can be calculated in O(n2k2 logk+1 n) time.

For fixed k, this is better than the O(n3 log n) algorithm from Theorem 1 and would
be the best algorithm known for fixed k > 2.

6.3 An Improved Binary Search Algorithm for k = 2

Lemma 21 permits constructing the R′
i j in O(nk2 log2 n) time instead of the

O(n2k2 log2 n) required for Ri j . This suggests replacing the R̄i j calls in BIN1 with
R′
i j calls. The difficulty with this approach is that Algorithm BIN1 strongly used the

monotonicity of Mq
i j which was a consequence of the monotonicity of the R̄i j derived

in Lemma 9. Unfortunately, as noted after the statement of Corollary 1, Lemma 9 can
not be generalized to prove themonotonicity of the R′

i j . Consequentially, the algorithm
can not just simply replace the Ri j with R′

i j .
It can, though, use the relationship between Ri j and R′

i j in Lemma 6 to simulate

R̄i j calls in BIN1 with R′
i j calls.

This will be quite technical so, to provide intuition, we first work through the details
for k = 2. When k = 2, BIN1 only calls case 1 (with q = 2) and all calls have i ≡ 0.
This specialized version is written as BIN2.2 in Fig. 8; for simplification, the call

Fig. 8 BIN2.2—the second iterated binary search algorithm, specialized for the case k = 2. When k = 2,
q = 2 and i ≡ 0, so the call M(q : i, �q , uq ) from BIN1 can be rewritten as T (�, u). Also note that

Mq−1
(t+1)n = R̄(t+1)n . The R̄i j calls in the algorithm can be simulated by R′

i j calls as noted in the comments
and explained further in the text
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M(2 : 0, �q , uq) is relabelled as T (�, u). We now show how BIN2.2’s use of R̄i j

terms can be replaced by R′
i j terms.

For given t , define the partitions

P̂(t) := {P1(t), P2(t)} where P1(t) := P0t and P2(t) := P(t+1)n

and set

V (t) := max{R′
0t , R

′
(t+1)n}.

From Lemmas 2 and 6

V (t) = max{R̄0t , R̄(t+1)n}.

Furthermore, if V (t) = 0 for any t , then M2
0,n = 0 and the algorithm can terminate.

Lemma 6 also implies that if V (t) > 0, then d ′(P̂(t)) = d̄(P̂(t)) and there are
only two possibilities

– d ′(P̂(t)) = d̄(P̂(t)) = 1. Then

R′
0t ≥ R′

(t+1)n and R̄0t ≥ R̄(t+1)n and R′
0t = R̄0t .

– d ′(P̂(t)) = d̄(P̂(t)) = 2. Then

R′
0t < R′

(t+1)n and R̄0t < R̄(t+1)n and R′
(t+1)n = R̄(t+1)n .

Now consider the 3 parts of BIN2.2

(a) If � = u = 0 : Then t2[0, n] = � = 0

In this case, exactly as in BIN1, 0 = R̄00 ≥ R̄1,n so M2
0n = 0.

(b) If � = u 
= 0 : Then t2[0, n] = � > 0.

As in BIN1, the algorithm needs to return M2
0n = min{R̄0�, R̄�n}.

By the definition of t2[0, n]
– d(P̂(�)) = 1, so V (�) = R̄0� = R′

0�,

– d(P̂(� − 1)) = 2, so V (� − 1) = R̄�n = R′
�n .

Thus BIN2.2 correctly returns the value

min{R̄0�, R̄�n} = min{V (�), V (� − 1)} = min{R′
0�, R

′
�n}.

(c) If � < u : Then set m = �(� + u/2�. Check if R̄0m ≥ R̄(m+1)n .
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Start by calculating V (m) = max{R′
0t , R

′
(t+1)n} and d ′(P̂(t)). From the obser-

vations above, if V (m) = 0, then M2
0,n = 0 and the algorithm can terminate.

Otherwise V (m) 
= 0 and

R̄0m ≥ R̄(m+1)n iff d ′(P̂(m)) = 1 iff R′
0m ≥ R′

(m+1)n

Thus (c) can be implemented properly by just checking whether or not R′
0m ≥

R′
(m+1)n .

Notice that all evaluations of Ri j are now simulated by evaluations of R′
i j . Since

Lemma 21 permits constructing the pair R′
0t , R

′
(t+1)n in O(nk2 log2 n) time this proves

Theorem 6 If k = 2 then

min
{P̂,Ŷ }

Rmax({P̂, Ŷ }) = M2
0n

can be calculated in O(n log3 n) time.

6.4 An Improved Binary Search Algorithm for General k

Generalizing the ideas above for k > 2 is more complicated. It will need to utilize
information that BIN1 ignored. More specifically, M(q : i, �q , uq) was evaluated at
the end of a recursive chain of calls that actually defined a splitting of [x0, xi−1] into
k − q partitions. The new algorithm will recall and use those partitions. This will be
done by passing a listL of the right boundaries of the partitions to the called procedure.

Also, BIN1 evaluated R̄i j values exactlywhen theywere needed. The newalgorithm
will defer evaluating R′

i j values until a full P̂ with k partitions has been formed and

will then evaluate all of the R′
i j values for that P̂ simultaneously.

Definition 15 For v < k and a sequence 0 ≤ r1 < r2 < r3 < · · · < rv < n set (See
Fig. 9)

L := < r1, r2, . . . , rv > .

Such a list will be called a partition sequence with size |L| := v. If L = ∅, set v := 0.
Given a partition sequence L of size v,

– Set l1 := 0 and, for 1 ≤ j ≤ v, set l j+1 := r j + 1.
– If v = 0, set V (L) := 0 and leave d(L) undefined. Otherwise, set

V (L) := max
1≤ j≤v

R̄l j r j , d(L) := arg max
1≤ j≤v

R̄l j r j .

– If v = k − 1, set rn := n and ∀ j , Pj := [xl j , xr j ]. Define P̂(L) as

P̂(L) := {P1, P2, . . . , Pk}.
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Fig. 9 In the diagram above t̄ = tq [i, n]. This diagram illustrates the recursive calls in Case 2(b) (subfig-
ures (ii) and (iii)) and Case 2(c) (subfigure (i)) in the revised algorithm that calculates T (v : L, �q , uq ).
L =< r1, r2, . . . , rv >, q = k − v and li+1 = ri + 1. Note that L defines the partitions to the
left of xrv . The algorithm works almost the same as BIN1 in trying to find the minimum value of
Mq
lv+1n

. The main difference between this algorithm and BIN1 is that if this algorithm ever finds that

V (L) = max0≤ j≤v R̄l j ,r j > Mq
lv+1n

the procedure returns immediately

– If v < k − 1 and rv < j < n define the j-extension of L as

L ⊕ j := < r1, r2, . . . , rv, j > .

Evaluations of R̄li ri will be deferred until v = k − 1 when L will correspond to a
full partition. At this point, the evaluation of all of the R̄li ri in P̂(L) will be replaced
by evaluation of the R′

i j in P̂(L) using the following:

Lemma 23 For partition sequence L =< r1, r2, . . . , rk−1 >, let T est(L) be the
procedure that returns the pair (d, V ) where

V := max
1≤ j≤k

R̄l j r j and d := min
{
j : R̄l j r j = V

} = d̄(P̂(L)).

Then

1. T est(L) can be implemented in O(nk2 log2 n) time.
2. If V = 0, then Rk

max(P) = 0.
3. If V > 0, then ∀ j < d, R̄l j r j < R̄ldrd and ∀ j > d, R̄l j r j ≤ R̄ldrd .

Proof From Lemma 21 a fixed R′
l j r j

can be constructed in in O(|r j − l j +1|k2 log2 n)

time. Since
∑k

j=1 |r j − l j + 1| = O(n), all of the R′
l j r j

in P̂(L) can be constructed in

O(nk2 log2 n) total time. The remainder of the lemma follows directly fromLemmas 6
and 7 and in particular the facts that
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(i)

V (L) = max
1≤ j≤k

R̄l j r j = max
1≤ j≤k

R′
l j r j , (45)

(ii) if V = 0 then Rk
max(P) = 0, and

(iii) if V 
= 0 then d ′(P̂(L)) = d̄(P̂(L)). �	
We can now describe the algorithm. For L =< r1, r2, . . . , rv > set q = k − v and

define

T (v : L, �q , uq) := (d, V )

such that

V := max

{
V (L), min

�q≤t≤uq
max

{
R̄lv+1t , Mq−1

(t+1)n

}}
,

d :=
{
min

{
j : 1 ≤ j ≤ v such that R̄l j r j = V (L)

}
if V = V (L),

v + 1 if V > V (L).

(46)

Intuitively, L fixes the first (leftmost) v partitions. The maximum is taken over
those v partitions and the best case for the remaining q = k−v partitions on the right.
If the maximum is one of the first v partitions, d will record its location. Otherwise,
d = v + 1 denotes that the maximum is not one of them.

We now modify algorithm BIN1 from Fig. 6 so that it calculates T (v : L, �q , uq)
instead of M(q : i, �q , uq). As defined, M(q : i, �q , uq) didn’t originally store infor-
mation as to the partition boundaries to the left of location xi . T (v : L, �q , uq) will
use that missing information, encoded in L. Similar to the previous section we define

Definition 16 The parameters of T (v : L, �q , uq) satisfy the sandwich condition if
�q ≤ tq [lv+1, n] ≤ uq .

If they satisfy the sandwich condition then

min
�q≤t≤uq

max
{
Rlv+1t , Mq−1

(t+1)n

}
= min

{
Rlv+1tq [lv+1,n], Mq−1

tq [lv+1,n]n
}

= Mq
lr+1n

.

Thus

Property 7 If the parameters of T (v : L, �q , uq) satisfy the sandwich condition then
(d, V ) = T (v : L, �q , uq) satisfies

V = max
{
V (L), Mq

lv+1n

}
. (47)

Furthermore, if V = V (L) then d = d(L).

Note that since j + 1 ≤ tq [ j + 1, n] < n, it follows that
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Property 8 A call of the form T (v : L ⊕ j, j + 1, n − 1) satisfies the sandwich
condition.

As a special case, T (0 : ∅, 0, n − 1) satisfies the sandwich condition so (d, V ) =
T (0 : ∅, 0, n − 1) yields max

{
V (∅), Mq

l1n

}
= Mq

0n , which is what is required.

The final main observation is that if T (v : L, �q , uq) is called with v = |L| = k−2
then L ⊕ j will define a full partition so T est(L ⊕ j) is well-defined.

We now work through the new algorithm, BIN2. We will always assume that no
call (d, V ) = T est(L) will ever return V = 0 because, if it does, Lemma 7 permits
terminating BIN2 and reporting that Mk

0,n = 0.
BIN2 follows. We stress that the logic of BIN2 is exactly the same as that of BIN1

and therefore do not explicitly prove correctness. Instead we describe how the R̄i, j

evaluations in BIN1 are correctly simulated by the T est(∗ : ∗, ∗, ∗) calls in BIN2. In
particular, boxes labelled “Call” are calls to either T est or recursive calls made by the
procedure; boxes labelled Return(d, v) are what the procedure returns (based on the
calls it made).

(1) v = k − 2which implies q = k − v = 2 : Recall lk−1 = rk−2 + 1

(a) If �2 = u2 = lk−1 the same analysis as in Sect. 6.2 shows that t2[lk−1, n] = �2
so M2

lk−1n
= 0.

Let (d, V ) := T est(L ⊕ �2). If V 
= 0 then from Property 7, V = V (L) and
d = d(L). Thus the following returns the correct answer:

Return (d, V ) := T est(L ⊕ �2).

(b) If �2 = u2 
= lk−1 : From the sandwich condition, �2 = t2[lk−1, n]. To simplify
the analysis set

A := R̄lk−1�2 , B := R̄(�2+1)n, A′ := R̄lk−1(�2−1), B ′ := R̄�2n,

From the definition of t2[lk−1, n], A ≥ B, A′ < B ′, and

M2
lk−1n = min

{
max{A, B}, max{A′, B ′}} = min{A, B ′}.

Now

Call

(dA, VA) := T est(L ⊕ �2);
(dB, VB) := T est(L ⊕ (�2 − 1));

Recall that

V (L) = max
1≤ j≤k−2

R̄l j r j .
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From the facts above and Property 7

VA = max {V (L), A, B} = max {V (L), A} ,

VB = max
{
V (L), A′, B ′} = max

{
V (L), B ′} ,

V = max
{
V (L), M2

lk−1n

}
= max

{
V (L),min{A, B ′}} .

The following flow directly from the definitions

A ≥ B so dA 
= k, A′ < B ′ so dB 
= k − 1,
If dA ≤ k − 2 ⇒ VA = V (L) ≥ A, If dB ≤ k − 2 ⇒ VB = V (L) ≥ B ′,
If dA = k − 1 ⇒ VA = A > V (L), If dB = k ⇒ VB = B ′ > V (L).

This provides enough information to calculate (d, V ) = T (k − 2 : L, �2, �2) from
the results of the T est() procedures. There are four possibilities.

Return (d,V)

dA ≤ k − 2 and dB ≤ k − 2 ⇒ d := dA = dB and V := VA = VB = V (L)

dA = k − 1 and dB ≤ k − 2 ⇒ d := dB and V := VB = V (L)

dA ≤ k − 2 and dB = k ⇒ d := dA and V := VA = V (L)

dA = k − 1 and dB = k ⇒ d := k − 1 and V := min{VA, VB}

(c) �2 < u2 :
Note that by the sandwich condition �2 ≤ t2[lk−1, n] ≤ u2, so Eq. 47 implies that

V = max
{
V (L), M2

lk−1n

}
. Set m := �(�2 + u2)/2� and run

Call (d ′, V ′) := T est(L ⊕ m).

By definition, V ′ = max{V (L), A, B} where

A := R̄lk−1m and B := R̄(m+1)n .

Furthermore,

M2
lk−1n = min

lk−1≤t<n
max

{
R̄lk−1t , R̄(t+1)n

} ≤ max{A, B}.

Note that if d ′ ≤ k − 2 then

V (L) = V ′ ≥ max{A, B} ≥ M2
lk−1n

and thus (d, V ) = (d ′, V ′).
If d ′ > k−2 the result of the T est() procedure can not calculate V from V ′. Similar

to BIN1, though, it can halve the possible range of t2[lk−1, n]. More specifically,
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– If d ′ = k − 1

– R̄lk−1m = A = V ′ ≥ B = R̄(m+1)n
– ⇒ �2 ≤ t2[�k−1, n] ≤ m
– ⇒ (d, V ) = T (k − 2 : L, �2,m).

– If d ′ = k

– R̄(m+1)n = B = V ′ > A = R̄lk−1m

– ⇒ m + 1 ≤ t2[�k−1, n] ≤ u2
– ⇒ (d, V ) = T (k − 2 : L,m + 1, u2).

This provides enough information to calculate (d, V ) := T (k − 2 : L, �2, u2) from
the results of the T est() procedure. There are three possibilities.

Return (d,V)

d ′ ≤ k − 2 ⇒ (d, V ) := (d ′, V ′)
d ′ = k − 1 ⇒ (d, V ) := T (k − 2 : L, �2,m)

d ′ = k ⇒ (d, V ) := T (k − 2 : L,m + 1, u2)

|

(2) v < k − 2 : which implies q = k − v : Recall lv+1 = rv + 1

(a) If �q = uq = lv+1 the same analysis as in Sect. 6.2 shows that �q = tq [lv+1, n]
so

0 ≥ R̄lv+1,lv+1 ≥ Mq−1
(lv+1+1)n ≥ 0 (48)

which immediately implies that Mq
(lv+1+1)n = 0 and so, from Property 7,

Return (d, V ) := T (v + 1 : L ⊕ lv+1, lv+1 + 1, n).

(b) If �q = uq 
= lv+1 : From the sandwich condition, �q = tq [lv+1, n]. Set

A := R̄lv+1�q , B := Mq−1
(�q+1)n, A′ := R̄lv+1(�q−1), B ′ := Mq−1

�qn
,

Again from the definition of tq [lv+1, n], A ≥ B, A′ < B ′, and Mq
lr+1n

= min{A, B ′}.
Now

Call

(dA, VA) := T (v + 1 : L ⊕ �q , �q + 1, n) (Figure 9(ii))

(dB, VB) := T (v + 1 : L ⊕ �q − 1, �q , n) (Figure 9(iii))

Similar to the v = k + 2 case, from the facts above and the definition of T (),

VA = max {V (L), A, B} = max {V (L), A}
VB = max

{
V (L), A′, B ′} = max

{
V (L), B ′}
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The pertinent facts are

A ≥ B so dA 
= v + 2, A′ < B ′ so dB 
= v + 1,
if dA ≤ v ⇒ VA = V (L) ≥ A if dB ≤ v ⇒ VB = V (L) ≥ B ′,
if dA = v + 1 ⇒ VA = A > V (L), if dB = v + 2 ⇒ VB = B ′ > V (L).

This provides enough information to calculate (d, V ) = T (v : L, �q , �q) from the
results of the two recursive calls. There are four possibilities.

Return (d,V)

dA ≤ v and dB ≤ v ⇒ d := dA = dB and V := VA = VB = V (L)

dA = v + 1 and dB ≤ v ⇒ d := dB and V := VB = V (L)

dA ≤ v and dB = v + 2 ⇒ d := dA and V := VA = V (L)

dA = v + 1 and dB = v + 2 ⇒ d := v + 1 and V := min{VA, VB}

(c) �q < uq : From property 7, V = max
{
V (L), Mq

lr+1n

}
.

Now set m := �(�q + uq)/2� and run

Call

(d ′, V ′) := T (v + 1 : L ⊕ m,m + 1, n). (Figure 9(i))

By definition, V ′ = max{V (L), A, B} where

A := R̄lv+1m and B := Mq−1
(m+1)n .

Furthermore,

Mq
lv+1n

= min
lv+1≤t≤n

max
{
R̄lv+1t , M

q−1
(t+1)n

}
≤ max{A, B}.

Now note that if d ′ ≤ v then

V (L) = V ′ ≥ max{A, B} ≥ Mq
lv+!n

and thus (d, V ) = (d ′, V ′).
If d ′ > v we can not know V from V ′, but again, can halve the possible range of

tq [lv+1, n]. More specifically

– If d = v + 1

– R̄lv+1m = A = V ′ ≥ B = Mq−1
(m+1)n

– ⇒ �q ≤ tq [�v+1, n] ≤ uq
– ⇒ (d, V ) = T (v : L, �q ,m).

– If d = v + 2

– Mq−1
(m+1)n = B = V ′ > A = R̄lv+1m
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– ⇒ m + 1 < tq [�v+1, n] < n
– ⇒ (d, V ) = T (v : L,m + 1, uq).

This provides enough information to calculate (d, V ) = T (v : L, �q , �q) from the
results of the recursive call. There are three possibilities.

Return (d,V)

d ′ ≤ v ⇒ (d, V ) := (d ′, V ′)
d ′ = v + 1 ⇒ (d, V ) := T (v : L, �q ,m)

d ′ = v + 2 ⇒ (d, V ) := T (v : L,m + 1, uq)

By construction, when the algorithm terminates, it returns the correct answer. The
running time analysis is very similar to that of BIN1.

Let g(n) denote the time to run one T est() procedure. From Lemma 23, g(n) =
O(nk2 log2 n). Now set Gq(m) be the worst case time required to calculate T (v :
L, �q , uq) when uq − �q < m and v = k − q. Working through the code gives

Gq(m) ≤

⎧
⎪⎪⎨

⎪⎪⎩

2g(n) if q = 2, m = 1
G2(�m/2�) + g(n) if q = 2, m > 1
2Gq−1(n) if q > 2, m = 1
Gq(�m/2�) + 2Gq−1(n) if q > 2, m > 1

which evaluates out to Gq(n) = O(g(n) logk−1 n) = O(nk2 logk+1 n).
We have therefore just proven

Theorem 7 For any k, the minmax regret k-sink evacuation time

min
{P̂,Ŷ }

Rmax({P̂, Ŷ }) = Mk
0n

can be calculated in O
(
nk2 logk+1 n

)
time.

7 Conclusion and Further Directions

In this paperwe derived new combinatorial properties that permitted efficiently solving
the minmax regret k-sink location problem for dynamic flows on a path with uniform
edge capacities. This provided an improved algorithm for the k = 2 case and the first
polynomial time algorithms for the k > 2 case.

As noted earlier, our analysis assumed that sinks could be placed anywhere on
an edge. An alternative model would restrict sink placement to vertices. We note
that our results, algorithms and running times will all still hold in the vertex-on-sink
model. To prove this, though, would require revisiting all the proofs and restricting
all minimums/maximums over ranges to minimums/maximums over vertices in those
ranges. This is mechanical; in many cases, such as the proof of Lemma 20, this would
involve finding the edge in which a non-vertex minimum/maximum is found and
then returning the minimum/maximum value at one of the endpoints of that edge. In
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addition, the proof of Lemma 22 explicitly used the O(n log n) algorithm from [7] to
construct Θk

opt(P, s) for fixed scenarios s ∈ S∗. Bhattacharya et al. [7] also assumed
that sinks could be anywhere so it would also be necessary to gomodify [7]’s algorithm
in similar ways as well to work when sinks are restricted to be on vertices.

We conclude by discussing possible extensions. The normal (optimization and not
regret) version of the sink location problem is NP-Hard to solve on general graphs
even with k = 1 [24], so attempting to extend the results in this paper to general
graphs would not be possible. Chen and Golin [15] gives polynomial time algorithms
for placing k sinks on a tree to minimize evacuation time but only the k = 1 case
[9] has been solved for minmax regret with an O(n log n) algorithm. The bottleneck
to solving the k-sink location minmax regret problem on trees is that while there is
an understanding of the structure of the worst case scenario set for trees when k = 1
there is still no good understanding of the structure when k > 1, i.e., a tree analogue
for Theorem 1.

Another extension would be, on paths, to attempt to extend the results to dynamic
flows with general capacities on the edges. More specifically, all of the prior work
quoted in Sect. 1 assumes uniform capacity, i.e., every edge having identical capacity.
A more natural problem formulation that appears in realistic dynamic flow problems
allows different edges to have different capacities. Currently, though, there still is
no polynomial time solution for solving the minmax regret problem on a dynamic
path with general edge capacities, even when k = 1. Similar to the uniform capacity
tree problem just discussed, the bottleneck in finding a solution seems to be that, for
different capacity edges on a path, even when k = 1, there is no understanding of the
combinatorial structure of the set of worst-case scenarios.

Appendix

8 The Critical Vertex Tree Data Structure

In this section we describe the CVT Data Structure of [9] and how it can be used to
implement the operations described in Lemma 11 in O(log n) time.

Let s be any fixed scenario. We start with [9]’s O(n) time construction (slightly
modified) of an O(n) space CVT for a fixed s and afterwards describe how this can
be further modified, to construct in O(n) time an extended CVT that permits queries
to any s ∈ S∗.

Assume that n + 1 is a power of 2. If not, pad path P with empty vertices on the
right (with no weights) to reach a power of 2. Also before starting, perform a O(n)

preprocessing step, calculating and storing all of the valuesWs
i = ∑i

j=0 w j (s). After

this step, for any a ≤ b, the values Ws
a,b = ∑b

j=a w j (s) can be calculated in O(1)

time. Note that, given5 x < y, the values

Ws(x, y) =
∑

x≤x j≤y

w j (s) = Ws
b − Ws

a−1

5 The statement, “Given x”, will always include knowing i such that xi ≤ x ≤ xi+1.
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Fig. 10 The left critical-vertex of path [x ′, x] is the node m at which the top equation in Definition 17 is
maximized. Intuitively, this is the last vertex at which the first supply from x ′ has to stop due to congestion
when evacuating to x . The diagram illustrates two paths [x ′, x] and [x, x ′′] and their respective critical
vertices m,m′. The main fact upon which the CVT is based is that the critical vertex of combined path
[x ′, x ′′] must be one of m and m′

can then also be calculated in O(1) time.
Recall that ΘL(P, x, s) and ΘR(P, x, s) were defined to be the time needed to

evacuate everything to the left (resp. right) of sink x to x under scenario s. Then, from
Eq. 1,

ΘL([x ′, x], x, s)] = max
x ′≤xi<x :Ws (x ′,xi )>0

{
(x − xi )τ + Ws(x ′, xi )

c

}
. (49)

Similarly, set

ΘR([x ′, x], x ′, s) = max
x ′<xi≤x :Ws (xi ,x ′)>0

{
(xi − x ′)τ + Ws(xi , x ′)

c

}
. (50)

Definition 17 The left/right critical vertices of ([x ′, x], s) are

CL([x ′, x], s) := arg max
i : x ′≤xi<x :Ws (x ′,xi )>0

{
(x − xi )τ + Ws(x ′, xi )

c

}
,

CR([x ′, x], s) := arg max
i : x ′<xi≤x :Ws (xi ,x)>0

{
(xi − x)τ + Ws(xi , x)

c

}
.

Intuitively, the critical vertex is the last location at which items starting on the
leftmost (rightmost) vertex encounter congestion. Note that if the critical vertices of
[x ′, x] are known, then ΘL([x ′, x], x, s) and ΘR([x ′, x], x ′s) can be calculated in
O(1) time. The major observation [9] upon which the CVT data structure is based is
(Fig. 10) that if x ′ ≤ x ≤ x ′′ then the left (right) critical vertex of [x ′, x ′′] is either (i)
the left (right) critical vertex of [x ′, x] or (ii) the left (right) critical vertex of [x, x ′′].
Thus the critical vertices of ([x ′, x ′′], s) can be found in O(1) time from the critical
vertices of its two subpaths.

The data structure will require a slightly extended version of this.

Lemma 24 Let i ≤ j ≤ k. The critical vertices of (Pik, s) can be constructed in O(1)
time from the critical vertices of (Pi j , s) and (P( j+1)k, s).
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Fig. 11 The Critical Vertex Tree T s for scenario s is a balanced tree with leaf nodes corresponding to
path vertices and internal tree nodes corresponding to the subpath spanning descendant leaves. Node u,
corresponding to subpath P(u) = [

xL(u), xR(u)

]
, will store the locations of the left and right critical vertices

of P(u) under scenario s

Proof First note that because (Pj( j+1), s) only contains two vertices, its critical ver-
tices can be found in O(1) time.

The critical vertices of (Pi( j+1), s) can be calculated in O(1) time from those of
(Pi j , s) and (Pj( j+1), s). The critical vertices of (Pik, s) can be calculated from those
of (Pi( j+1), s) and (P( j+1)k, s) in a further O(1) time. �	

A critical vertex tree T s for s was then defined by [9] as follows.

– T s is a balanced binary tree with the vertices of P as its leaf nodes6.
– For a node u ∈ T s let L(u) (resp. R(u)) denote the index of the leftmost (rightmost)
vertex on P that belongs to the subtree T s(u) rooted at u. Node u ∈ T s(u)

corresponds to the subpath P(u) = [
xL(u), xR(u)

]
.

– Vertex u ∈ T s will store the critical values CL(P(u), s) and CR(P(u), s).

A leaf node corresponds to a single vertex path and is thus its own critical vertex. For
non-leaf u, let ul andur denote its left and right children. Then P(ul) = [

xL(ul ), xR(ul )
]

and P(ur ) = [
xL(ur ), xR(ur )

]
where R(ul) + 1 = L(ur ). Lemma 24 thus permits

finding the critical vertices of P(u) from the critical vertices of P(ul) and P(ur ) in
O(1) time. The entire critical vertex tree T s can therefore be constructed in O(n) time
(Fig. 11).

Because n + 1 is a power of 2, T s may be stored implicitly in an array so that any
node u can be accessed directly in O(1) time. In addition, if u has height h then P(u)

has the form
[
xv2h , x(v+1)2h−1

]
and every path of the form

[
xv2h , x(v+1)2h−1

]
is P(u)

for some u. In particular, for any u this permits evaluating L(u) and R(u) in O(1)
time. For u, u′, this in turn permits checking in O(1) time whether P(u) ⊂ P(u′),
P(u′) ⊂ P(u) or P(u) ∩ P(u′) = ∅ (these three are the only possibilities).

We now define

Definition 18 Set s+ to be the scenariowith ∀ j, w j (s) = w+
j and s

− to be the scenario

with ∀ j, w j (s) = w−
j . The Critical Vertex Tree (CVT) Data Structure is the pair T

s+

and T s− along with Ws+
i , Ws−

i for all i = 0, 1, . . . , n.

6 vertex refers to a vertex of P while node refers to a node of T s .
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For t1 ≤ t2 let s = s∗
B(t1, t2) and consider T s . Note that all three trees T s+ , T s− and

T s have the same topology and only differ in the values stored at the nodes. Let us
+
,

us
−
and us respectively denote the same node u in the three trees. It is straightforward

to see that

1. If R(u) < t1 or R(u) > t2 then the subtrees rooted at us
−
and us are identical

(including their critical vertex values). Such nodes u ∈ T s are called low nodes.
2. If t1 ≤ L(u) ≤ R(u) ≤ t2 then the subtrees rooted at us

+
and us are identical

(including their critical vertex values). Such nodes u ∈ T s are called high nodes.
3. If u ∈ T s is neither low nor high it is called a split node. Split nodes must be one

of the O(log n) tree ancestors of xt1 and/or xt2 .

Given theCVTData Structure and s = s∗
B(t1, t2) this permits implicitly “constructing”

T s in O(log n) time as follows. By processing the ancestors of xt1 and xt2 from lowest
to highest and using the preprocessed information from the CVT, the critical vertices
of the split nodes u can be calculated in O(1) time per node or O(log n) total time.
Since there are at most two such split nodes u’s of a given height, their information
can be stored in an array permitting O(1) lookup.

The above gives an implicit construction of T s ; the critical vertex information of
any node u ∈ T s can be retrieved in O(1) time from T s+ , T s− or the split node
array by first determining whether it is low, high or split and then looking it up in
the appropriate array. Finally, note that Ws

i values can be retrieved from the Ws+
i and

Ws−
i values in O(1) time. Thus, given the CVT Data Structure, after the O(log n)

construction of the split-node array, we can assume the existence of the CVT for s.
We write this as

Lemma 25 Assume the CVT Data Structure has already been built. Then for any
t1 ≤ t2 and s = s∗

B(t1, t2), T s can be built in O(log n) time.

Definition 19 – A node path in P is a subpath of the form P(u) = [
xv2h , x(v+1)2h−1

]

where u ∈ T s .
– Let i ≤ j . A Tree Decomposition of Pi j of size t is a sequence i − 1 = i0 <

i1 < . . . < it = j such that for k = 1, . . . , t , P(k) = [xik−1+1, xik ] is a node path.
Equivalently, it is a sequence of nodes u1, u2, . . . , ut ∈ T s such that P(uk) =
[L(uk), R(uk)] = [xik−1+1, xik ].

– AMinimal Tree Decomposition (MTD) of Pi j is a tree decomposition of minimal
size.

Note that the MTD of Pi j is unique and, for each h, contains at most two subpaths
of length 2h , and thus has size O(log n). It can also easily be constructed in O(log n)

time. See Fig. 12 for an example.
For a given Pi j and s = s∗

B(t1, t2) let MT D[i, j, s] denote the correspondingMTD
of Pi j of size t = O(log n) along with the associated three arrays L[1..t], R[1..t] and
R′[1..t] defined as follows: for 1 ≤ k ≤ t , set
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Fig. 12 TheMTD for Pi j with i = 29 and j = 329. The path [xi , x j ] can be decomposed into the sequence
28, 29, 31, 63, 127, 255, 319, 327, 329 which corresponds to the 8 node paths shown above, where the size
of each node path is denoted below it

L[k] := ΘL(Pi R(uk ), xR(uk ), s) (left evacuation time from xi to xRuk
),

R[k] := ΘR(PL(uk ),x j , xL(uk ), s) (right evacuation time from x j to xLuk
),

R′[k] := ΘR(Pi,R(uk ), xi , s) (right evacuation time from xRuk
to xi ).

Given a preconstructed CVT data structure these arrays can be filled in by first building
T s in O(log n) time using Lemma 25 and then repeated applications of Lemma 24
utilizing the critical vertex values stored at the nodes of T s .

We can now prove Lemma 11.

Proof of Lemma 11 The proof first first proves (1), then (3) and (4) and then returns to
prove (2). In what follows, the left and right children of node u will be denoted by ul
and ur . t = O(log n) will always denote the size of the current MTD.

Lemma 11 (1) : CalculatingΘL(Pi j , x, s) andΘR(Pi j , x, s).
To calculate ΘL(Pi j , x, s), first binary search in O(log n) time to find v such that

xv−1 < x ≤ xv ≤ x j . Next build MT D[i, v, s] in O(t) time. From Lemma 15

ΘL(Pi j , x, s) = ΘL(Piv, x, s) − τ(xv − x) = L[t] − τ(xv − x).

The calculation of ΘR(Pi j , x, s) is similar (and symmetric).

Lemma 11 (3) : Constructing x ′′ = max{x ′ ∈ [xi , x j ] : ΘL(P ′, x ′, s) ≤ α}.
First build MT D[i, j, s] in O(log n) time.
IfΘL(Pi j , x j , s) = L[t] ≤ α then the answer is just x ′′ = x j . We therefore assume

that there exists v ≤ j such that

v = min
{
r : i ≤ r < j, and ΘL(Pi j , xr , s) ≥ α

}
.

Given v, part (1) of the Lemma permits calculatingΘL(Piv, xv, s) in O(log n) time.
From Lemma 15, for x ′ ∈ (xv−1, xv],

ΘL(Pi j , x
′, s) = ΘL(Piv, x

′, s) = ΘL(Piv, xv, s) − τ(xv − x ′).

Thus

x ′′ =
{
xv−1 if ΘL(Piv, xv, s) − τ(xv − xv−1) > α,
1
τ

(α − ΘL(Piv, xv, s) + τ xv) otherwise.

and x ′′ can therefore be found in O(log n) time from v. It remains to show how to find
v in O(log n) time from MT D[i, j, s].
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Fig. 13 Illustration of the proof of Lemma 11 (3), trying to find leftmost v satisfying ΘL (Piv, xv, s) ≥ α.
It is known in advance that xv ∈ P(u). Testing whether ΘL (Pi R(ul ), xR(ul ), s) ≥ α permits determining
whether xv ∈ ul or xv ∈ ur

To find v, first use O(log n) time to find the smallest k such that L[k] ≥ α.
Use part (1) of the Lemma to check, in O(log n) time, whetherΘL(Pi j , xL(uk ), s) ≥

α. If yes, then because R(uk−1) = L(uk) − 1, v = L(uk) and the process finishes.
Otherwise xv ∈ P(uk). Set u := uk .We now simulate a binary search for xv ∈ P(u)

by walking down the subtree of T s rooted at u, on each level deciding in O(1) time
whether to walk left or right. See Fig. 13.

To start, set P̄ := Pi(L(u)−1) and from MT D[i, j, s] construct the left critical ver-
tices of P̄ in O(log n) time. We know that

(i) xv ∈ P(u), (ii)ΘL(P̄, xL(u)−1, s) < α,

(iii)ΘL(Pi R(u), xR(u), s) ≥ α. (51)

1. If P(u) is one node, then u = xv . Stop.
2. Otherwise set P̄ ′ := Pi R(ul ), the concatenation of P̄ and and P(ul). The left critical

vertices of P(ul) can be extracted from T s in O(1) time. Lemma 24 permits
combining them with the known critical vertices of P̄ to construct the left critical
vertices of P̄ ′ in O(1) time.
This in turn permits the calculation of ΘL(P̄ ′, xR(ul ), s) in O(1) time

3. If ΘL(P̄ ′, xR(ul ), s) < α, set P̄ := P̄ ′ and u = ur .
Otherwise, keep P̄ unchanged and set u := ul .

4. Return to step 1

Note that R(ul) = L(ur ) − 1 so after step (3), Eq. 51 remains correct for the new
value of v, regardless of whether the algorithm walks left or right.

Thus, after O(log n) decision steps, this procedure reaches a leaf of the tree and
this leaf must be xv . Since each step uses only O(1) time and the preceding parts used
only O(log n) time, the total procedure uses O(log n) time.

Lemma 11 (4) : For x ∈ [xi , x j ], calculate j̄ =max{ j ′ ≤ j : ΘR([x, x j ′ ], x, s) ≤ α}.
First use O(log n) time to find v such that xv ≤ x < xv+1. From Lemma 15,

ΘR([x, x j ′ ], x, s) = ΘR(Pv j ′, xv, s) − τ(x − xv).

Setting α′ := α + τ(x − xv), the problem is then equivalent to finding

max{ j ′ ≤ j : ΘR(Pv j ′, xv, s) ≤ α′}.
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Now buildMT D[v, j, s] in O(log n) time. If R′[t] ≤ α then j̄ = j and the process
finishes.

Otherwise, in O(log n) time, find the largest index k such that R′[k] ≤ α′.
Next use Part 1 to check in O(log n) time if ΘR

(
Pv(R(uk )+1), xv, s

)
> α′.

If yes, then j̄ = R(uk). Otherwise x j̄ ∈ uk and can be found in O(log n) time using
essentially the same binary search procedure as in (3).

Lemma 11 (2) : CalculatingΘ1(Pi j , s) and associated x∗ value.
Let

v := min
{
r : i ≤ r ≤ j, and ΘL(Pi j , xv, s) ≥ ΘR(Pi j , xv, s)

}
.

Then xv−1 ≤ x∗ ≤ xv . If v were known we could use the techniques seen previously
to calculate both ΘL(Pi j , xv, s) and ΘR(Pi j , xv−1, s) in O(log n) time and then use
Lemma 15 to find x∗ and Θ1(Pi j , s) in a further O(1) time.

Instead of directly finding v, we actually find the smallest v̄ such thatΘL(Pi j , xv̄ , s)
≥ ΘR(Pi j , xv̄+1, s). Then

ΘL(Pi j , xv̄+1, s) > ΘL(Pi j , xv̄ , s) ≥ ΘR(Pi j , xv̄+1, s)

and

ΘL(Pi j , xv̄−1, s) < ΘR(Pi j , xv̄ , s) ≤ ΘR(Pi j , xv̄−1, s)

so either v = v̄ or v = v̄ + 1. We can then find the value of v in O(log n) time using
4 applications of part (1),

To find v̄, first, in O(log n) time build MT D[i, j, s]. In O(log n) time, find the
smallest k such that L[k] ≥ R[k + 1]. Let u = uk . This implies that

ΘL(Pi j , xR(u), s) ≥ ΘR(Pi j , xR(u)+1, s) and

ΘL(Pi j , xL(u)−1, s) ≥ ΘR(Pi j , xL(u), s)

Thus v̄ ∈ P(uk). Set u := uk , PL := Pi(L(u)−1) and PR := P(R(u)+1) j . PL , PR, u
satisfy

(i) v̄ ∈ P(u), (ii) PL = Pi(L(u)−1), (iii) PR = P(R(u)+1) j (52)

We again do a simulated binary search for v̄. To initialize, in O(log n) time, find
the left critical vertex of PL and the right critical vertex of PR .

At each iterative step we will, in O(1) time, replace u by either ul or ur maintaining
the correctness of all three invariants in Eq. 52. Since u starts at height O(log n) this
process only uses O(log n) additional time (Fig. 14).

1. If u is a leaf stop and set v̄ := u.
2. Set P̄L := Pi R(ul ) (the concatenation of PL and P(ul)) and

P̄R := PL(ur ) j (the concatenation of P(ur ) and PR).
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Fig. 14 Illustration of the proof of Lemma 11 (2), trying to find leftmost v̄ satisfying ΘL (Pi j , xv̄ , s) ≥
ΘR(Pi j , xv̄+1, s). It is known that xv ∈ P(u). Comparing ΘL (Pi j , xR(ul ), s) and ΘL (Pi j , xL(ur , s)
permits determining whether xv̄ ∈ P(ul ) or xv̄ ∈ P(ur )

3. From MT D[i, j, s] find the left critical vertex of P(ul) and right critical-vertex
of P(ur ) for s in O(1) time.
Use the known left critical vertex of PL and right critical vertex of PR and
Lemma 24 to construct the left critical vertex of P̄L and right critical vertex
of P̄R in O(1) time.
Then calculate ΘL(P̄L , xR(ul ), s) and ΘR(P̄R, xL(ur ), s) in O(1) time.

4. If ΘL(P̄L , xR(ul ), s) ≤ ΘR(P̄R, xL(ur ), s) set PR := P̄R and u := ul .
Otherwise set PL := P̄L and u := ur .

5. Go to step 1

�	
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