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Let P be an undirected path graph of n vertices. Each edge of P has a positive length and a constant capac-
ity. Every vertex has a nonnegative supply, which is an unknown value but is known to be in a given
interval. The goal is to find a point on P to build a facility and move all vertex supplies to the facility such
that the maximum regret is minimized. The previous best algorithm solves the problem in Oðn log2nÞ time
and Oðn log nÞ space. In this paper, we present an Oðn log nÞ time and OðnÞ space algorithm, and our
approach is based on new observations and algorithmic techniques.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Facility location problems on networks have received consider-
able attention over a few decades. The problems are normally con-
cerned with networks where the information (e.g., the vertex and
the edge weights) are known precisely. However, data in practice
often involve uncertainty and may change with the time. Recently
facility locations problems in uncertain environments have been
studied, e.g., Averbakh and Bereg (2005), Averbakh and Berman
(1997, 2000a, 2000b, 2003), Bhattacharya and Kameda (2012),
Bhattacharya, Kameda, and Song (2012a, 2012b), Chen and Lin
(1998), Cheng et al. (2013), Conde (2007, 2008), Kouvelis and Yu
(1997), Puerto, Rodríguez-Chía, and Tamir (2009) and Yu, Lin,
and Wang (2008). One approach that is often used to model the
uncertainty is the worst-case analysis in which one is looking for
a solution that performs reasonably well for all possible scenarios
(where a scenario is a specific realization of all uncertain parame-
ters of the problem). There are many optimization criteria in the
worst-case analysis. In particular, the minmax regret optimization
aims at obtaining a solution that minimizes the maximum devia-
tion, over all possible scenarios, between the value of the solution
and the optimal value of the corresponding scenario, e.g., Averbakh
and Berman (1997, 2000b), Bhattacharya and Kameda (2012),
Bhattacharya et al. (2012a, 2012b), Cheng et al. (2013), Kouvelis
and Yu (1997) and Yu et al. (2008). In other words, the minmax
regret optimization seeks to minimize the worst-case loss in the
objective function value that may occur because the solution is
chosen without knowing which scenario will take place.
In this paper, we consider the minmax regret 1-facility location
problem on uncertain path networks where the vertex weights are
uncertain. The problem was proposed recently by Cheng et al.
(2013) and an Oðnlog2nÞ time and Oðn log nÞ space algorithm was
given in Cheng et al. (2013). By discovering more observations,
we present an Oðn log nÞ time and OðnÞ space algorithm in this
paper. Shortly after the preliminary version of this paper appeared
in Wang (2013), Cheng et al.’s algorithm (Cheng et al., 2013) was
independently improved to Oðn log nÞ time and Oðn log nÞ space in
their journal paper (Higashikawa et al., 2014).

As discussed in Cheng et al. (2013), the problem is motivated by
an earthquake evacuation problem due to the Tohoku-Pacific
Ocean Earthquake that happened in Japan on March 11th, 2011.
For example, suppose we have a highway that connects many cities
and we want to find a location on the highway to build an evacu-
ation facility such that when earthquake happens we can evacuate
people in all these cities to the facility as soon as possible. The
number of people in each city is uncertain due to different time
periods (e.g., weekdays, weekends, days, nights, holidays). We
formally introduce the problem below, and some notations are
borrowed from Cheng et al. (2013).

1.1. Problem definitions

Let P ¼ ðV ; EÞ be a path graph, with the vertex set
V ¼ fv1; . . . ;vng and the edge set E ¼ fe1; . . . ; en�1g, such that ei

connects v i and v iþ1 for each 1 6 i 6 n� 1. Each edge e 2 E has a
positive weight lðeÞ. Each vertex v i 2 V has a weight wi (e.g., the
number of evacuees), which is unknown but is known in a given
interval w�i ;w

þ
i

� �
with 0 6 w�i 6 wþi . Let c be a constant represent-

ing the capacity of each edge, which is the maximum number of
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evacuees passing any point in any unit time. Let s be a positive
constant representing the time required for traversing a unit dis-
tance of every evacuee. Let R be the Cartesian product of all inter-
vals ½w�i ;wþi � for 1 6 i 6 n. Every element s 2 R is called a scenario
that is a feasible assignment of weights to the vertices of P. For any
scenario s 2 R, for each 1 6 i 6 n, we denote by wiðsÞ the weight of
the vertex v i in the scenario s, and w�i 6 wiðsÞ 6 wþi .

As in Cheng et al. (2013), we embed the path P on a real line L
(e.g., the x-axis) such that each vertex v i 2 V is associated with the
coordinate xi ¼ x1 þ

Pi�1
j¼1lðejÞ for each 2 6 i 6 n. For each point

x 2 L, with a little abuse of notation, we also use x to denote the
coordinate of the point. We use P to denote the set of points x on
L with x1 6 x 6 xn. For any point x 2 P, let PLðxÞ ¼ ft 2 P j t < xg
and PRðxÞ ¼ ft 2 P j t > xg. Suppose we build a facility at a location
x 2 P. Consider any scenario s 2 R. We use TLðx; sÞ to denote the
minimum time for the evacuees on PLðxÞ to move to x; similarly,
let TRðx; sÞ denote the minimum time for the evacuees on PRðxÞ to
move to x. Note that if x is at a vertex v i 2 V , then we assume
the evacuees at v i can complete evacuation in no time. As dis-
cussed in Cheng et al. (2013), by Kamiyama, Katoh, and Takizawa
(2006), TLðx; sÞ and TRðx; sÞ can be expressed as follows.

TLðx; sÞ ¼ max
v i2PLðxÞ

ðx� xiÞ � sþ
1
c
�
Xi

j¼1

wjðsÞ
& ’

� 1

( )
;

TRðx; sÞ ¼ max
v i2PRðxÞ

ðxi � xÞ � sþ 1
c
�
Xn

j¼i

wjðsÞ
& ’

� 1

( )
:

Note that if PLðxÞ ¼ ;; TLðx; sÞ ¼ 0, and if PRðxÞ ¼ ;; TRðx; sÞ ¼ 0.
As in Cheng et al. (2013) and Higashikawa et al. (2014), in this

paper we consider the case where c ¼ 1. We should point out that
Cheng et al. (2013) claimed that any algorithm works for c ¼ 1 can
also work for any other values of c (our preliminary version (Wang,
2013) cited their claim). However, it was found that the claim was
not correct (Higashikawa et al., 2014), and therefore, their algo-
rithms (Cheng et al., 2013; Higashikawa et al., 2014) only work
for the case c ¼ 1 and so does the algorithm in this paper.

But we can ignore the �1 from the above formulas when
designing the algorithm. Hence, as in Cheng et al. (2013), we sim-
ply use the following definitions for TLðx; sÞ and TRðx; sÞ.

TLðx; sÞ ¼ max
v i2PLðxÞ

ðx� xiÞ � sþ
Xi

j¼1

wjðsÞ
( )

;

TRðx; sÞ ¼ max
v i2PRðxÞ

ðxi � xÞ � sþ
Xn

j¼i

wjðsÞ
( )

:

As in Cheng et al. (2013), for convenience of discussion, for each
1 6 i 6 n, we define a function f i

Lðx; sÞ on x > xi and a function
f i
Rðs; xÞ on x < xi as follows.

f i
Lðx; sÞ ¼ ðx� xiÞ � sþ

Xi

j¼1

wjðsÞ;

f i
Rðx; sÞ ¼ ðxi � xÞ � sþ

Xn

j¼i

wjðsÞ:

Hence, we have TLðx; sÞ ¼maxv i2PLðxÞf
i
Lðx; sÞ and TRðx; sÞ ¼

maxv i2PRðxÞf
i
Rðx; sÞ.

Let Tðx; sÞ denote the minimum time for all evacuees on P to
move to x. Thus, Tðx; sÞ ¼maxfTLðx; sÞ; TRðx; sÞg. Denote by xoptðsÞ
a point on P such that Tðx; sÞ is minimized when x ¼ xoptðsÞ, and
one may consider xoptðsÞ as an optimal location for the scenario s.
For any point x on L, let Rðx; sÞ ¼ Tðx; sÞ � TðxoptðsÞ; sÞ, and we call
Rðx; sÞ the regret of x in the scenario s. Intuitively, Rðx; sÞ is the
regret (i.e., the opportunity loss) caused by choosing the location
x instead of the optimal location xoptðsÞ. Finally, the maximum regret
of x is defined as RmaxðxÞ ¼maxs2RRðx; sÞ. In other words, RmaxðxÞ is
the worst-case opportunity loss for choosing the location x.

Our minmax regret problem is to choose a location x on L such
that the maximum regret RmaxðxÞ is minimized, and the minimized
RmaxðxÞ is called the minmax regret.

1.2. Our approach

In this paper we present an algorithm of Oðn log nÞ time and
OðnÞ space for the problem, which improves the Oðnlog2nÞ time
and Oðn log nÞ space algorithm (Cheng et al., 2013).

Our algorithm makes use of the critical observation given in
Cheng et al. (2013) that there are a set S of 2n scenarios such that
for any point x on L, the ‘‘worst-case’’ scenario for RmaxðxÞ must be
in S. This implies that instead of considering the infinitely many
scenarios of R for computing RmaxðxÞ, we only need to consider
the scenarios in S. The algorithm has two main steps. The first step
is to compute the optimal positions for all scenarios in S. An
Oðnlog2nÞ time algorithm is given in Cheng et al. (2013) for the
step. By finding new properties on the optimal solutions of these
scenarios, we are able to compute all optimal solutions in
Oðn log nÞ time by an even simpler algorithm. The second step is
to compute the minmax regret. This step also takes Oðnlog2nÞ time
in Cheng et al. (2013). Our algorithm runs in Oðn log nÞ time and
OðnÞ space. The high level scheme of our approach is binary search,
whose efficiency hinges on solving the following sub-problem in
linear time: Given any point x on L, compute the values TLðx; sÞ
and TRðx; sÞ for all scenarios s 2 S. A straightforward method can
compute TLðx; sÞ and TRðx; sÞ in OðnÞ time for each scenario s, and
thus solves the sub-problem in Oðn2Þ time. By discovering some
interesting observations, we present an OðnÞ time algorithm for
the sub-problem. It should be noted that our algorithm itself is
very simple but it is more challenging to observe the crucial
properties behind the scene.

In the following, we discuss some basic observations in
Section 2. In Section 3, we compute the optimal locations for all
scenarios in S. Section 4 computes the minmax regret. Section 5
concludes the paper and discusses some possible future work.

2. Preliminaries

We discuss some observations that will be useful for our algo-
rithm. Most of these observations have been discovered in Cheng
et al. (2013) and we sketch them in this section for completeness
of this paper.

Our goal is to find a location x to minimize the maximum regret
RmaxðxÞ ¼maxs2RRðx; sÞ. Consider any point x on P and any scenario
s 2 R. To compute Rðx; sÞ, we need to known xoptðsÞ first. Recall that
xoptðsÞ is the value of x such that Tðx; sÞ ¼maxfTLðx; sÞ; TRðx; sÞg is
minimized when x ¼ xoptðsÞ. To determine xoptðsÞ, we discuss some
properties of TLðx; sÞ and TRðx; sÞ.

Recall that TLðx; sÞ ¼ maxv i2PLðxÞf
i
Lðx; sÞ. For each 1 6 i 6 n, the

function f i
Lðx; sÞ defines in the plane an open half-line of slope s with

(but excluding) the (left) endpoint ðxi;
Pi

j¼1wjðsÞÞ (e.g., see Fig. 1).
TLðx; sÞ is the upper envelope of the n half-lines defined by the func-
tions f i

Lðx; sÞ for i ¼ 1; . . . ;n. Since s > 0, TLðx; sÞ is a strictly increas-
ing function of x (e.g., see Fig. 1). Similarly, each f i

Rðx; sÞ defines an
open half-line of slope �s with (but excluding) the (right) endpoint
ðxi;
Pn

j¼iwjðsÞÞ, and TRðx; sÞ is the corresponding upper envelope,
which is strictly decreasing. Since Tðx; sÞ ¼maxfTLðx; sÞ; TRðx; sÞg,
Tðx; sÞ is a unimodal function of x in the sense that there exists a
value x� such that Tðx; sÞ is strictly decreasing on ð�1; x�� and
increasing on ½x�;þ1Þ (e.g., see Fig. 2). Note that the above x� is
xoptðsÞ. These properties are already given in Cheng et al. (2013).
We also have the following observation.
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Fig. 1. Illustrating the functions f i
Lðx; sÞ. TLðx; sÞ is the upper envelope of them,

shown with red color. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Observation 1. For any scenario s 2 R, Tðx; sÞ is the upper envelope
of the functions f i

Lðx; sÞ and f i
Rðx; sÞ for i ¼ 1; . . . ;n.

For any point x, to compute the maximum regret RmaxðxÞ, a
straightforward approach is to enumerate all scenarios in R to
compute Rðx; sÞ for every scenario s 2 R. However, since there are
infinitely many scenarios in R, the approach does not work. Below,
we use a difference approach.

A scenario s is the worst-case scenario for the location x if
RmaxðxÞ ¼ Rðx; sÞ, and we denote it by sðxÞ. Clearly, if we know
sðxÞ, then we can compute RmaxðxÞ ¼ Rðx; sðxÞÞ. Cheng et al. (2013)
provided a way to determine a set S of at most 2n scenarios such
that sðxÞ must be in S for any x, as follows.

For each 1 6 i 6 n, let si
L be the scenario where the weight wjðsi

LÞ
of the vertex v j is wþj for each j with 1 6 j 6 i, and wjðsi

LÞ ¼ w�j for
each j with iþ 1 6 j 6 n if i < n. Symmetrically, for each 1 6 i 6 n,
let si

R be the scenario where wj si
R

� �
¼ w�j for each j with 1 6 j 6 i,

and wjðsi
RÞ ¼ wþj for each j with iþ 1 6 j 6 n if i < n. Let

SL ¼ si
L j 1 6 i 6 n

� �
and SR ¼ fsi

R j 1 6 i 6 ng. Let S ¼ SL [ SR. The
following lemma has been proved in Cheng et al. (2013).

Lemma 1 Cheng et al. (2013). For any point x on L, there exists a
worst-case scenario for x in S.

In light of Lemma 1, we have RmaxðxÞ ¼maxs2SRðx; sÞ. Hence, to
compute RmaxðxÞ, instead of considering all scenarios of R, we only
need to consider the 2n scenarios in S. For each s 2 S, to compute
Rðx; sÞ, we need to know the optimal location xoptðsÞ. Cheng et al.
(2013) presented an Oðnlog2nÞ time algorithm for computing
xoptðsÞ for all scenarios s 2 S, and in Section 3 we describe an
Oðn log nÞ time algorithm.

3. Computing the optimal solutions for the scenarios of S

In this section, we present an Oðn log nÞ time and OðnÞ space
algorithm for computing xoptðsÞ for all scenarios s 2 S, which
improves the Oðnlog2nÞ time algorithm in Cheng et al. (2013).
x1
xnx*=xopt(s)

x

Fig. 2. Illustrating the function Tðx; sÞ shown with thick segments and the optimal
location xoptðsÞ.
Our improvement is due in a large part to certain monotonicity
properties of the values xoptðsÞ given in Lemma 2.

Lemma 2. For any two scenarios si
L and siþ1

L of SL with 1 6 i 6 n� 1,
if xiþ1 6 xopt si

L

� �
, then xiþ1 6 xopt siþ1

L

� �
6 xopt si

L

� �
; otherwise,

xopt si
L

� �
6 xopt siþ1

L

� �
6 xiþ1.
Proof. We only prove the case where xiþ1 6 xopt si
L

� �
since the proof

for the other case where xiþ1 > xopt si
L

� �
is very similar.

According to the definitions of the two scenarios si
L and siþ1

L , for
each vertex v j, if j – iþ 1, the weights of v j in the two scenarios are

the same, but for the vertex v iþ1, wiþ1 si
L

� �
¼ w�iþ1 and wiþ1 siþ1

L

� �
¼

wþiþ1. By Corollary 1 in Cheng et al. (2013), xiþ1 6 xopt siþ1
L

� �
holds.

Below, we prove xopt siþ1
L

� �
6 xopt si

L

� �
. To this end, it is sufficient to

show that TL x; siþ1
L

� �
> TR x; siþ1

L

� �
for any x > xopt si

L

� �
. The details

are given below.
Consider any value x > xopt si

L

� �
. Since TLðx; sÞ is strictly increas-

ing and TRðx; sÞ is strictly decreasing for any scenario s, according to
the definition of xopt si

L

� �
, we have TL x; si

L

� �
> TR x; si

L

� �
.

According to the definitions of si
L and siþ1

L , f j
L t; siþ1

L

� �
P f j

Lðt; si
LÞ

for any j P iþ 1 and any t > xj (more precisely, f j
L t; siþ1

L

� �
¼

f j
Lðt; si

LÞ þwþiþ1 �w�iþ1), and f j
L t; siþ1

L

� �
¼ f j

Lðt; si
LÞ for any j 6 i and

any t > xj (e.g., see Fig. 3). Due to x > xopt si
L

� �
P xiþ1, we obtain

TL x; siþ1
L

� �
P TL x; si

L

� �
.

Similarly, f j
R t; siþ1

L

� �
P f j

Rðt; si
LÞ for any j 6 iþ 1 and any t < xj, and

f j
R t; siþ1

L

� �
¼ f j

Rðt; si
LÞ for any j P iþ 2 and any t < xj (e.g., see Fig. 3).

Since x > xopt si
L

� �
P xiþ1, none of the functions f j

R t; siþ1
L

� �
for j 6 iþ 1

is defined on t ¼ x. Therefore, we obtain TR x; siþ1
L

� �
¼ TR x; si

L

� �
.

The above shows that TL x; si
L

� �
> TR x; si

L

� �
; TL x; siþ1

L

� �
P TL x; si

L

� �
,

and TR x; siþ1
L

� �
¼ TR x; si

L

� �
. Hence, we conclude that

TL x; siþ1
L

� �
> TR x; siþ1

L

� �
. h

Lemma 2 implies the following monotonicity property of
xopt si

L

� �
. Suppose initially x2 6 xopt s1

L

� �
; as the index i increases,

xopt si
L

� �
moves monotonically ‘‘backward’’ to the left until at some

moment xiþ1 > xopt si
L

� �
happens, after which xopt si

L

� �
moves mono-

tonically ‘‘forward’’ to the right. This monotonicity property turns
out to be quite useful to our algorithm.

Similarly, we have the following lemma for SR, which implies a
monotonicity property of xoptðsi

RÞ (the indices are considered from
right to left).

Lemma 3. For any two scenarios si
R and siþ1

R of SR with 1 6 i 6 n� 1,
if xi 6 xopt siþ1

R

� �
, then xi P xopt si

R

� �
P xopt siþ1

R

� �
; otherwise,

xopt siþ1
R

� �
P xopt si

R

� �
P xi.
Proof. The proof is symmetric to that for Lemma 2 by considering
the indices from right to left, and we omit the details. h
xi xi+1

sL
ix )(opt

sL
i+1xopt(      )

x

Fig. 3. Illustrating TL x; si
L

� �
; TR x; si

L

� �
, TL x; siþ1

L

� �
, and TR x; siþ1

L

� �
. TL x; siþ1

L

� �
(resp.,

TR x; siþ1
L

� �
) can be obtained by shifting a portion of TL x; si

L

� �
(resp., TR x; si

L

� �
) on the

right (resp., left) of xiþ1 upwards for wþiþ1 �w�iþ1.
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Based on Lemmas 2 and 3, we present our algorithm for com-
puting xoptðsÞ for all s 2 S as follows. We first compute xoptðsÞ for
all s 2 SL, by using Lemma 2.

Our algorithm will compute xopt si
L

� �
in the index order

i ¼ 1;2; . . . ;n. We assume we already have a data structure D that
can compute the values TLðx; sÞ and TRðx; sÞ whenever needed for
any x and s 2 SL. Initially, to determine xopt s1

L

� �
, we compute the val-

ues TL x; s1
L

� �
and TR x; s1

L

� �
for x ¼ x1; x2; . . . in the (forward) order to

find the smallest index i1 such that TL xi1 ; s
1
L

� �
P TR xi1 ; s

1
L

� �
. As

discussed in Cheng et al. (2013), xopt s1
L

� �
2 ½xi1�1; xi1 � and can be

determined in constant time. Next, we compute xopt x2
L

� �
. Assume

x2 6 xopt x2
L

� �
. By Lemma 2, x2 6 xopt x2

L

� �
6 xoptðx1

L Þ, we only need to
search the portions of TL x; s2

L

� �
and TR x; s2

L

� �
for x2 6 x 6 xopt s1

L

� �
.

To this end, we compute the values TL x; s2
L

� �
and TR x; s2

L

� �
by using

D for x ¼ xi1 ; xi1�1; . . . in the (backward) order to find the first index
i2 such that TLðxi2 ; s

2
L ÞP TRðxi2 ; s

2
L Þ and TL xi2�1; s2

L

� �
< TR xi2�1; s2

L

� �
.

As discussed in Cheng et al. (2013), xopt s2
L

� �
2 ½xi2�1; xi2 � and can be

determined in constant time.
In general, assume xopt sj

L

� 	
has been computed and xjþ1 6

xopt sj
L

� 	
. Further, assume xopt sj

L

� 	
is known in the interval ½xij�1; xij �.

To compute xopt sjþ1
L

� 	
, by Lemma 2, we have xjþ1 6 xopt sjþ1

L

� 	
6 xopt sj

L

� 	
. We compute the values TL x; sjþ1

L

� 	
and TR x; sjþ1

L

� 	
by D

for x ¼ xij ; xij�1; . . . in the (backward) order to find the first index

ijþ1 such that TL xijþ1
; sjþ1

L

� 	
P TR xijþ1

; sjþ1
L

� 	
and TLðxijþ1�1; s

jþ1
L Þ

< TRðxijþ1�1; s
jþ1
L Þ. Again, xopt sjþ1

L

� 	
2 ½xijþ1�1; xijþ1

� and can be deter-

mined in constant time.
We continue the same procedure until the first time we have

computed xopt sk
L

� �
with xopt sk

L

� �
< xkþ1 for an index k. We also have

the interval ½xik�1; xik � that contains xopt sk
L

� �
. By Lemma 2,

xopt sk
L

� �
6 xopt skþ1

L

� �
6 xkþ1. Hence, to compute xopt skþ1

L

� �
, we need

to search the portions of TL x; skþ1
L

� �
and TR x; skþ1

L

� �
for xopt sk

L

� �
6 x.

To this end, we compute the values TL x; skþ1
L

� �
and TR x; skþ1

L

� �
by

D for x ¼ xik�1; xik ; . . . in the (forward) order to find the first index
ikþ1 such that TL xikþ1

; skþ1
L

� �
P TR xikþ1

; skþ1
L

� �
and TL xikþ1�1; skþ1

L

� �
<

TR xikþ1�1; skþ1
L

� �
. Again, xopt skþ1

L

� �
2 ½xikþ1�1; xikþ1

� and can be deter-

mined in constant time. Next, we compute xopt skþ2
L

� �
. We have

the following observation.

Observation 2. xopt skþ1
L

� 	
< xkþ2 holds.

Proof. By Lemma 2, we have xopt sk
L

� �
6 xopt skþ1

L

� �
6 xkþ1. Due to

xkþ1 < xkþ2, the observation simply follows. h

Due to the above observation, we can compute xopt skþ2
L

� �
in the

similar way as xopt skþ1
L

� �
. We continue this procedure to compute

xoptðsj
LÞ for j ¼ kþ 2; kþ 3; . . . ;n. Note that similar observation as

Observation 2 always holds (i.e., xoptðsj
LÞ < xjþ1 for any j with

kþ 1 6 j 6 n� 1). The algorithm stops when xoptðsn
L Þ is computed.

To analyze the running time, suppose any needed values TLðx; sÞ
and TRðx; sÞ in the above algorithm can be computed in OðTDÞ time
by using the data structure D; then we have the following lemma.

Lemma 4. The values xoptðsÞ for all scenarios s 2 SL can be computed
in Oðn � TDÞ time.
Proof. It is sufficient to show that the number of calls to D is OðnÞ
in the entire algorithm.

We still use k to denote the smallest index with xopt sk
L

� �
< xkþ1.

By the monotonicity property in Lemma 2, xopt si
L

� �
is moving
monotonically to the left for i ¼ 1;2; . . . ; k, and xopt si
L

� �
is moving

monotonically to the right for i ¼ kþ 1; kþ 2; . . . ;n. When we
compute xopt si

L

� �
for i ¼ 1; . . . ; k, the x values for computing TL x; si

L

� �
and TR x; si

L

� �
are monotone decreasing. Therefore, when computing

the values xopt si
L

� �
’s for i ¼ 1; . . . ; k, the total number of calls on D is

OðnÞ. Analogously, when computing the values xopt si
L

� �
’s for

i ¼ kþ 1; . . . ;n, the total number of calls on D is also OðnÞ. The
lemma thus follows. h

It remains to design the data structure D, which is given in the
following lemma.

Lemma 5. In OðnÞ time and OðnÞ space, we can build a data structure D
that can compute in Oðlog nÞ time (i.e., TD ¼ Oðlog nÞ) any value TLðx; sÞ
or TRðx; sÞ needed in our algorithm for computing xoptðsÞ for all s 2 SL.
Proof. With Oðn log nÞ time preprocessing, Cheng et al. (2013) pro-
pose a data structure that can compute TLðx; sÞ and TRðx; sÞ for any x
and s 2 SL in Oðlog nÞ time, by using persistent data structures
(Driscoll, Sarnak, Sleator, & Tarjan, 1989). Below, we give a simple
solution with only OðnÞ preprocessing time, without using the per-
sistent data structures.

We first discuss an observation on our algorithm that makes the
design of our data structure easier. In our algorithm for computing
xoptðsÞ for all s 2 SL, when we are computing xopt si

L

� �
, for any

1 6 i 6 n, we need to compute TL x; si
L

� �
and TR x; si

L

� �
for certain

values of x. After xopt si
L

� �
is computed, we will never need to

compute TL x; si
L

� �
and TR x; si

L

� �
for the scenario si

L again. Note that
the corresponding algorithm in Cheng et al. (2013) does not have
such a property.

Our data structure D has two parts DL and DR. DL is for
computing TLðx; sÞ and DR is for computing TRðx; sÞ. Below, we only
discuss DL since DR is very similar.

DL consists of a sequence of trees Di
L for i ¼ 1;2; . . . ;n, where Di

L

is used for computing TL x; si
L

� �
for any x. Thanks to the observation

discussed above, at any moment during the algorithm, we only
need to maintain one tree in the above sequence (in contrast,
because the corresponding algorithm in Cheng et al. (2013) does
not have such a property, they have to maintain all these trees in a
persistent data structure). Specifically, initially we construct the

tree D1
L . Then, for each 1 6 i 6 n� 1, the tree Diþ1

L is obtained by

updating the tree Di
L in Oðlog nÞ time (Di

L is thus destroyed). Below,

we first describe the tree D1
L and then show how to update D1

L to

obtain D2
L . The tree is similar to that given in Cheng et al. (2013)

(without being made persistent). We briefly discuss it here to make
the paper self-contained.

We first discuss some observations on how to compute TLðx; sÞ.
Consider any scenario s and any value x with xj�1 < x 6 xj for

certain j. Recall that the functions f 1
L ðx; sÞ; f 2

L ðx; sÞ; . . . ; f j�1
L ðx; sÞ are

defined on x while f j
Lðx; sÞ; f

jþ1
L ðx; sÞ; . . . ; f n

L ðx; sÞ are not, and
TLðx; sÞ ¼max16t6j�1f t

L ðx; sÞ. Also recall that f t
L ðx; sÞ ¼ ðx� xtÞ � sþPt

h¼1whðsÞ. Hence, we can obtain the following TLðx; sÞ ¼ x � sþ
max16t6j�1ð

Pt
h¼1whðsÞ � xt � sÞ.

D1
L is a balanced binary search tree in which the leaves of DL

from left to right store the values
Pt

h¼1wh s1
L

� �
� xt � s for

t ¼ 1;2; . . . ;n. For each 1 6 t 6 n, let at ¼
Pt

h¼1wh s1
L

� �
� xt � s,

which is stored in the t-th leaf. For each node v (either a leaf or
an internal node), it also stores a value maxðvÞ, which is equal to
the maximum value stored in the leaves of the subtree rooted at v.

The tree D1
L can be easily constructed in OðnÞ time in a bottom-up

manner. Given any value x ¼ xj; TL x; s1
L

� �
can be computed in

Oðlog nÞ time, as follows. According to our above discussion, we
have TL xj; s1

L

� �
¼ xj � sþmax16t6j�1at . With standard techniques, by
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following the path Pj in D1
L from the root to the j-th leaf, we find a

minimum set V of nodes whose subtrees contain the leaves exactly
from the first leaf to the ðj� 1Þ-th one. Specifically, V ¼ v j v R Pj

�
and v is the left child of a node in Pj} (e.g., see Fig. 4). Clearly,
jV j ¼ Oðlog nÞ and can be found in Oðlog nÞ time. An easy observa-
tion is that the largest value maxðvÞ among all nodes v 2 V is
exactly max16t6j�1at . Hence, TL xj; s1

L

� �
is equal to xj � s plus the

above largest value maxðvÞ of v 2 V . Thus, we can compute
TL xj; s1

L

� �
in Oðlog nÞ time.

Next, we show how to update D1
L in Oðlog nÞ time to obtain the

tree D2
L , which is for computing TL x; s2

L

� �
for the scenario s2

L .

According to the definitions of the two scenarios s1
L and s2

L ,
comparing with s1

L , the weight of the vertex v2 in s2
L increases by

wþ2 �w�2 while the weights of all other vertices are the same. Hence,

all the values
Pt

h¼1wh s1
L

� �
� xt � s for t ¼ 2;3; . . . ;n stored in the

leaves of D1
L except the leftmost leaf should increase by wþ2 �w�2 .

We cannot afford to change each of these values explicitly since that
would need XðnÞ time. To obtain an Oðlog nÞ time performance, we
use the following approach. For each node v in the tree, we maintain
an additional value, called the supplement value and denoted by
supðvÞ. In D1

L ; supðvÞ ¼ 0 for each node v. Hence, in D1
L , for any

1 6 t 6 n, it holds that at þ
P

v2Pt
supðvÞ ¼

Pt
h¼1wh s1

L

� �
� xt � s,

where Pt is the path from the root of D1
L to the t-th leaf.

We update D1
L to obtain D2

L in the following way. Let P2 be the

path from the root of D1
L to the second leaf. First, for the second leaf

v, we increase supðvÞ by wþ2 �w�2 . Then, for each node v that is not
in P2 but is a right child of a node of P2, we increase supðvÞ by
wþ2 �w�2 . Note that the above can be done in Oðlog nÞ time. Now
consider the t-th leaf of the new tree, for any 1 6 t 6 n, and let Pt

be the path from the root to the leaf. It is easy to see that
at þ

P
v2Pt

supðvÞ ¼
Pt

h¼1wh s2
L

� �
� xt � s. In other words, if we fol-

low Pt from the root to aggregate the supplement value supðvÞ,
once we arrive the t-th leaf, we have the value

Pt
h¼1wh s2

L

� �
� xt � s

ready. Next, we update the values maxðvÞ for certain nodes v as
follows. If a node v has a child whose supplement value has been
increased above (note that v is necessarily on P2), then its maxðvÞ
may also need to be updated. To this end, for each internal node
v 2 P2, we simply set maxðvÞ to be maxfmaxðuÞ þ supðuÞ;maxðwÞ
þsupðwÞg, where u and w are the two children of v. Note that we do
not need to update the max value of the second leaf. This finishes

our update on D1
L and the new tree is D2

L . Clearly, D2
L can be

obtained in Oðlog nÞ time.
Consider any internal node u on D2

L and suppose the leftmost
(resp., rightmost) leaf in the subtree rooted at v is the l-th (resp.,
r-th) leaf. Let Pu be the path from the root to the node u. Based on
our construction, maxf

Pt
h¼1wh s2

L

� �
� xt � s j l 6 t 6 rg is exactly

equal to the value maxðuÞ þ
P

v2Pu
supðvÞ. Hence, given any x ¼ xj,

by using D2
L , we can compute the value TL x; s2

L

� �
in a similar way as

before, and the only difference is that we need to aggregate the
supplement values supðvÞ during traversing the tree from the root.
Fig. 4. The set V consists of the two circled nodes.
Specifically, to compute TL x; s2
L

� �
for any x ¼ xj, let Pj be the path of

D2
L from the root to the j-th leaf. We start from the root and

traverse the path Pj to the j-th leaf. During the traversal, consider
any node v 2 Pj. We maintain a value AðvÞ, which is equal to supðvÞ
if v is the root and Aðv:parentÞ þ supðvÞ otherwise (where v :parent
is the parent of v in Pj). If v has a left child u that is not in Pj, we let
the value maxðuÞ þ supðuÞ þ AðvÞ be in a set M (M ¼ ; initially). If v
is the j-th leaf, then we put the value AðvÞ þmaxðvÞ in M and finish
the traversal. After the traversal, M has Oðlog nÞ values, and the
maximum value of M is equal to maxf

Pt
h¼1wh s2

L

� �
� xt � s j 1

6 t 6 j� 1g. Therefore, TL xj; s2
L

� �
is equal to the maximum value

of M plus xj � s. Hence, TL xj; s2
L

� �
can be computed in Oðlog nÞ time.

Similarly, we can obtain the tree D3
L by updating D2

L in Oðlog nÞ
time. In general, for any 1 6 i 6 n� 1, if we already have the tree
Di

L, we can obtain Diþ1
L in Oðlog nÞ time by updating Di

L such that we
can compute TL x; siþ1

L

� �
for any x ¼ xj in Oðlog nÞ time.

The lemma thus follows. h

Combining Lemmas 4 and 5, the values xoptðsÞ for all scenarios
s 2 SL can be computed in Oðn log nÞ time. Using the similar algo-
rithm and Lemma 3, we can also compute the values xoptðsÞ for
all scenarios s 2 SR in Oðn log nÞ time. We conclude this section with
the following theorem.

Theorem 1. The values xoptðsÞ and TðxoptðsÞ; sÞ for all scenarios
s 2 S ¼ SL [ SR can be computed in Oðn log nÞ time and OðnÞ space.
4. Computing the minmax regret

Our goal is to determine an optimal location x� such that
RmaxðxÞ ¼maxs2RRðx; sÞ is minimized at x ¼ x�, where Rðx; sÞ ¼
Tðx; sÞ � TðxoptðsÞ; sÞ. Again, by Lemma 1, RmaxðxÞ ¼maxs2SRðx; sÞ,
which also implies that RmaxðxÞ is the upper envelope of the func-
tions Rðx; sÞ for all s 2 S.

Consider any scenario s. Since TðxoptðsÞ; sÞ is a constant value and
Tðx; sÞ is a unimodal function, Rðx; sÞ is also a unimodal function.
Therefore, RmaxðxÞ is the upper envelope of a set of unimodal func-
tions, which is also unimodal. To determine an optimal solution x�,
it is sufficient to determine the lowest point of the unimodal func-
tion RmaxðxÞ. Due to the unimodality of RmaxðxÞ, we will use binary
search to find its lowest point.

The high-level scheme of our algorithm for finding x� is a binary
search on the values x1; x2; . . . ; xn. For each value xk considered in
the binary search, we compute the value RmaxðxkÞ. To this end, we
present an OðnÞ time algorithm in Section 4.1 that can compute
the values TLðx0; sÞ and TRðx0; sÞ for all s 2 S, for any x0, after which
we can determine the value Rmaxðx0Þ in additional OðnÞ time since
we already know the values TðxoptðsÞ; sÞ for all s 2 S by Theorem 1.
Based on the function that gives the value RmaxðxkÞ, we can also
determine which direction to do binary search in a standard way
(Megiddo, 1983, 1984). The binary search will end up with either
x� ¼ xi for some xi or an interval ðxi; xiþ1Þ such that x� 2 ðxi; xiþ1Þ.
In the latter case, we finally determine x� in additional OðnÞ time
by linear programming (Megiddo, 1983, 1984) as follows. Note that
for any scenario s, the value TLðx; sÞ for x 2 ðxi; xiþ1Þ are given by the

same function f j
Lðx; sÞ for some j, and similar observation holds for

TRðx; sÞ. We find the functions giving the values in the interval
ðxi; xiþ1Þ for TL x; si

L

� �
; TR x; si

L

� �
; TLðx; si

RÞ, and TRðx; si
RÞ, for i ¼ 1; . . . ;n.

This can be done in OðnÞ time by the same algorithm in Section 4.1.
Denote by F the OðnÞ functions computed above. Hence, x� is the
x-coordinate of the lowest point p� of the upper envelope of the
functions in F. Note that every function of F defines a half-line that
spans the interval ðxi; xiþ1Þ. Hence, although each function of F is a
half-line, p� is also the lowest point of the upper envelope of the
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lines that contain the half-lines of F, and thus p� can be computed
in OðnÞ time by linear programming (Megiddo, 1983, 1984).

4.1. A linear time algorithm for computing Tðx0; sÞ for all s 2 S

In this section, we present an OðnÞ time algorithm for computing
Tðx0; sÞ for all s 2 S, for any x0. In other words, our goal is to compute
the values TL x0; si

L

� �
; TR x0; si

L

� �
; TL x0; si

R

� �
, and TR x0; si

R

� �
, for i ¼ 1; . . . ;n.

We only discuss our algorithm for computing TL x0; si
L

� �
for

i ¼ 1; . . . ;n since the algorithms for the other three cases are quite

similar. Further, for each 1 6 i 6 n, the function f j
L x0; si

L

� �
that gives

the value TL x0; si
L

� �
is also determined by the algorithm.

For any 1 6 i 6 j 6 n, we define aði; jÞ ¼
Pj

k¼i wþk �w�k
� �

. After
OðnÞ time preprocessing, given any i and j with 1 6 i 6 j 6 n, we
can obtain the value aði; jÞ in constant time. We omit the prepro-
cessing details and below we assume we have done the prepro-
cessing. For convenience, we let aði; jÞ ¼ 0 if i > j.

Let x0 be any value with x1 6 x0 6 xn. We first determine the
index i such that xi�1 < x0 6 xi. Thus, for any scenario s, only func-
tions f t

L ðx0; sÞ with 1 6 t 6 i� 1 are defined on x ¼ x0, and any func-
tion f t

L ðx; sÞ with i 6 t 6 n does not define on x ¼ x0. We compute
the value TL x; s1

L

� �
, which can be done in OðnÞ time, e.g., by comput-

ing f j
L x0; s1

L

� �
for each j with 1 6 j 6 i� 1.

Let k be the index such that TL x0; s1
L

� �
is given by the function

f k
L x0; s1

L

� �
, e.g., TL x0; s1

L

� �
¼ f k

L x0; s1
L

� �
. Hence, k 6 i� 1. The following

lemma will be useful later.

Lemma 6. Consider a function f t
L ðx; sÞ and a scenario sj

L. If

1 6 t; j 6 i� 1, then f t
L x0; sj

L

� 	
¼ f t

L x0; s1
L

� �
þ að2;mÞ with m ¼

minft; jg. This implies f t
L x0; st

L

� �
¼ f t

L x0; sj
L

� 	
if t 6 j 6 i� 1.
Proof. Consider any t and j with 1 6 t; j 6 i� 1. First of all, since
xi�1 < x0 6 xi; t 6 i� 1, and j 6 i� 1, both functions f t

L x; s1
L

� �
and

f t
L x; sj

L

� 	
are defined on x ¼ x0. Comparing with the scenario s1

L ,

the weight of each vertex vh for 2 6 h 6 j increase by wþh �w�h in

the scenario sj
L, and the weights of all other vertices are the same

as before. According to their definitions, we obtain that

f t
L x0; s1

L

� �
¼ f t

L x0; sj
L

� 	
þ að2; tÞ if t 6 j, and f t

L x0; s1
L

� �
¼ f t

L x0; sj
L

� 	
þ

að2; jÞ if t P j. The lemma thus follows. h

With the value TL x0; s1
L

� �
, the following lemma shows how to

compute TL x0; sj
L

� 	
for 2 6 j 6 k.

Lemma 7. If k P 2, for any scenario sj
L with 2 6 j 6 k,

TL x0; sj
L

� 	
¼ TL x0; s1

L

� �
þ að2; jÞ.

Proof. Assume k P 2. Consider any scenario sj
L with 2 6 j 6 k. We

first prove a claim that f k
L x0; sj

L

� 	
P f t

L x0; sj
L

� 	
for any 1 6 t 6 i� 1.

Due to TL x0; s1
L

� �
¼ f k

L x0; s1
L

� �
, it holds that f k

L x0; s1
L

� �
P f t

L x0; s1
L

� �
for

any 1 6 t 6 i� 1. Consider any t with 1 6 t 6 i� 1. By Lemma 6,

we have f t
L x0; sj

L

� 	
¼ f t

L x0; s1
L

� �
þ að2;mÞ, where m ¼minfj; tg. Since

j 6 k, f k
L x0; sj

L

� 	
¼ f k

L x0; s1
L

� �
þ að2; jÞ holds by Lemma 6. Clearly,

að2; jÞP að2;mÞP 0 due to m 6 j. Therefore, we obtain that

f k
L x0; sj

L

� 	
P f t

L x0; sj
L

� 	
.

The above claim implies that TL x0; sj
L

� 	
¼ f k

L x0; sj
L

� 	
. Since

f k
L x0; sj

L

� 	
¼ f k

L x0; s1
L

� �
þ að2; jÞ by Lemma 6 and TL x0; s1

L

� �
¼

f k
L x0; s1

L

� �
, the lemma follows. h
Suppose the value TL x0; si�1
L

� �
has already been computed; the

following lemma shows how to obtain TL x0; sj
L

� 	
for i 6 j 6 n.

Lemma 8. For any scenario sj
L with i 6 j 6 n, TL x0; sj

L

� 	
¼ TL x0; si�1

L

� �
.

Proof. Recall that for any scenario s only the functions f t
L ðx; sÞ with

1 6 t 6 i� 1 are defined on x ¼ x0. Consider any scenario sj
L with

i 6 j 6 n. Comparing with si�1
L , the weight of each vertex v t in sj

L

increases by wþt �w�t for any i 6 t 6 j, and all other vertex weights
do not change. Since the above vertex weight increase only affect

the functions f t
L x; sj

L

� 	
for t P i and none of these functions is

defined on x ¼ x0, the value TLðx0; sÞ does not change for s ¼ si�1
L

and s ¼ sj
L. A more formal proof is given below.

Let k0 be the index such that the value TL x0; si�1
L

� �
is given by

f k0
L x0; si�1

L

� �
, i.e., TL x0; si�1

L

� �
¼ f k0

L x0; si�1
L

� �
. Note that k0 6 i� 1. Hence,

f k0
L x0; si�1

L

� �
P f t

L x0; si�1
L

� �
for any 1 6 t 6 i� 1. In the scenario sj

L, the
weights of the vertices v t for 1 6 t 6 i� 1 are the same as those in

si�1
L . Therefore, f t

L x0; si�1
L

� �
¼ f t

L x0; sj
L

� 	
for any 1 6 t 6 i� 1. Thus,

f k0
L x0; sj

L

� 	
P f t

L x0; sj
L

� 	
for any 1 6 t 6 i� 1. We obtain that

TL x0; sj
L

� 	
¼ f k0

L x0; sj
L

� 	
. Due to f k0

L x0; sj
L

� 	
¼ f k0

L x0; si�1
L

� �
and

TL x0; si�1
L

� �
¼ f k0

L x0; si�1
L

� �
, we have TL x0; sj

L

� 	
¼ TL x0; si�1

L

� �
. h

Based on the preceding two lemmas, we can easily compute

TL x0; sj
L

� 	
for j ¼ 2; . . . ; k in OðnÞ time, and compute TL x0; sj

L

� 	
for

j ¼ i; . . . ;n in OðnÞ time provided that we know the value TL x0; si�1
L

� �
.

It remains to compute TL x0; st
L

� �
for t ¼ kþ 1; . . . ; i� 1, for which

we present an OðnÞ time algorithm below. Note that our algorithm
itself is simple (see the pseudocode Algorithm 1), but it is not easy
to discover the observations behind the scene. Our algorithm will
compute a solution index list K ¼ fk1; k2; . . . ; kdg with the following
properties:

Property 1. k1 ¼ k and k1 6 k2 6 � � � 6 kd 6 i� 1.
Property 2. For any j with 1 6 j 6 d� 1, f
kj
L x0; s

kj
L

� 	
< f

kjþ1
L x0; s

kjþ1
L

� 	
and f

kj
L x0; s1

L

� �
P f

kjþ1
L x0; s1

L

� �
.

Property 3. For any j with 1 6 j 6 d� 1, for any t with kj 6 t < kjþ1,

either f t
L x0; st

L

� �
6 f

kj
L x0; s

kj
L

� 	
or f t

L x0; s1
L

� �
< f

kjþ1
L x0; s1

L

� �
. If kd – i� 1,

then for any t with kd 6 t 6 i� 1; f t
L x0; st

L

� �
6 f kd

L x0; skd
L

� 	
.

If we already have such a solution index list K, the lemma below
provides a way to compute the values TL x0; st

L

� �
for kþ 1 6 t 6 i� 1

in OðnÞ time.

Lemma 9. For any scenario st
L with kþ 1 6 t 6 i� 1, if kj < t 6 kjþ1

for some 1 6 j 6 d� 1, then TL x0; st
L

� �
¼max f kj

L x0; st
L

� �
; f kjþ1

L x0; st
L

� �n o
;

if kd – i� 1 and kd < t, then TL x0; st
L

� �
¼ f kd

L x0; st
L

� �
.

Proof. Consider any scenario st
L with kþ 1 6 t 6 i� 1. Recall that

TL x0; st
L

� �
¼max16m6i�1f m

L x0; st
L

� �
. To simplify the notation, we use

f mðstÞ to represent f m
L x0; st

L

� �
. Hence, TL x0; st

L

� �
¼max16m6i�1f mðstÞ.

We assume t 6 kd since the case t > kd can be proved in a much
simpler way by the same techniques. Let j be the integer such that
kj < t 6 kjþ1. To prove the lemma, it is sufficient to show that

maxff kj ðstÞ; f kjþ1 ðstÞgP f mðstÞ for any m with 1 6 m 6 i� 1. To this



Fig. 5. kh 6 m < khþ1 6 kj < t 6 kjþ1.
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end, there are three cases depending on the value of m : 1 6 m
< kj; kj 6 m < kjþ1, and kjþ1 6 m 6 i� 1. Below, in each case, we will

show that either f mðstÞ 6 f kj ðstÞ or f mðstÞ 6 f kjþ1 ðstÞ holds.
First of all, due to kj < t and by Lemma 6, the following holds

f kj ðstÞ ¼ f kj ðskj Þ: ð1Þ

1. If 1 6 m < kj, we assume kh 6 m < khþ1 for some h < j. Note that
m < t holds in this case. See Fig. 5. By Lemma 6, we have
f mðstÞ ¼ f mðsm

L Þ. By Property 3 of the solution index list K, we
have either f mðsmÞ 6 f kh ðskh Þ or f mðs1Þ < f khþ1 ðs1Þ.
(a) If f mðsmÞ 6 f kh ðskh Þ, then by Property 2 of K, since h < j, we

can obtain f kh ðskh Þ < f khþ1 ðskhþ1 Þ < � � � < f kj ðskj Þ. Thus, we have
f mðstÞ ¼ f mðsmÞ < f kj ðskj Þ. Since f kj ðstÞ ¼ f kj ðskj Þ by Eq. (1), we
obtain f mðstÞ < f kj ðstÞ.

(b) If f mðs1Þ < f khþ1 ðs1Þ, then since m < khþ1, we have
f mðsmÞ ¼ f mðs1Þ þ að2;mÞ and f khþ1 ðsmÞ ¼ f khþ1 ðs1Þ þ að2;mÞ,
and thus f mðsmÞ < f khþ1 ðsmÞ. Note that f khþ1 ðsmÞ 6 f khþ1 ðskhþ1 Þ.
Further, due to khþ1 6 kj; f khþ1 ðskhþ1 Þ < f kj ðskj Þ holds by Prop-
erty 2 of K. Recall that f mðstÞ ¼ f mðsm

L Þ. Hence, we obtain
f mðstÞ ¼ f mðsm

L Þ < f kj ðskj Þ ¼ f kj ðstÞ by Eq. (1).
2. If kj 6 m < kjþ1, then by Property 3 of K, either f mðsmÞ 6 f kj ðskj Þ

or f mðs1Þ < f kjþ1 ðs1Þ.
(a) If f mðsmÞ 6 f kj ðskj Þ, then since f mðstÞ 6 f mðsmÞ always holds

by Lemma 6 regardless of whether m 6 t or m > t, we have
f mðstÞ 6 f kj ðskj Þ ¼ f kj ðstÞ by Eq. (1).

(b) If f mðs1Þ < f kjþ1 ðs1Þ, then since t 6 kjþ1, we have
f kjþ1 ðstÞ ¼ f kjþ1 ðs1Þ þ að2; tÞ by Lemma 6. Also, f mðstÞ ¼
f mðs1Þ þ að2;minft;mgÞ. Since f mðs1Þ < f kjþ1 ðs1Þ and
að2;minft;mgÞ 6 að2; tÞ, we have f mðstÞ 6 f kjþ1 ðstÞ.

3. If kjþ1 6 m 6 i� 1, for simplicity of discussion, we assume
m < kd and the case m P kd can be proved very similarly but
in a much simpler way. Let kh 6 m < khþ1 for some h > j. Note
that t 6 kjþ1 6 kh 6 m. See Fig. 6.

First of all, we claim that f mðstÞ 6 f kh ðstÞ. We prove the claim
below.
Indeed, by Lemma 6, we can obtain f mðsmÞ ¼ f mðstÞ þ aðt þ 1;mÞ
and f kh ðskh Þ ¼ f kh ðstÞ þ aðt þ 1; khÞ. According to Property 3 of K,
either f mðsmÞ 6 f kh ðskh Þ or f mðs1Þ < f khþ1 ðs1Þ.
(a) If f mðsmÞ 6 f kh ðskh Þ, then since aðt þ 1;mÞP aðt þ 1; khÞ (due

to kh 6 m), we obtain f mðstÞ 6 f kh ðstÞ.
(b) If f mðs1Þ < f khþ1 ðs1Þ, then by Property 2 of K,

f khþ1 ðs1Þ 6 f kh ðs1Þ. Thus, we obtain f mðs1Þ 6 f kh ðs1Þ. Due to
t 6 kh 6 m, we have f mðstÞ ¼ f mðs1Þ þ að2; tÞ and
f kh ðstÞ ¼ f kh ðs1Þ þ að2; tÞ. Hence, f mðstÞ 6 f kh ðstÞ holds.

Therefore, the claim f mðstÞ 6 f kh ðstÞ is proved.
(a) If jþ 1 ¼ h, the above proves f mðstÞ 6 f kjþ1 ðstÞ.
(b) If jþ 1 < h, we claim that f kh ðstÞ 6 f kjþ1 ðstÞ. Indeed, since

t 6 kjþ1 6 kh in this case, by Lemma 6, f kh ðstÞ ¼ f kh ðs1Þþ
að2; tÞ and f kjþ1 ðstÞ ¼ f kjþ1 ðs1Þ þ að2; tÞ. By Property 2 of
K; f kh ðs1Þ 6 f kjþ1 ðs1Þ. Therefore, f kh ðstÞ 6 f kjþ1 ðstÞ and the claim
is proved. Since f mðstÞ 6 f kh ðstÞ, we obtain f mðstÞ 6 f kjþ1 ðstÞ.

In any case above, we have shown that f mðstÞ
6 maxff kj ðstÞ; f kjþ1 ðstÞg holds. The lemma thus follows. h

Suppose we have a solution index list K. After we compute the
values f

kj
L x0; s1

L

� �
for j ¼ 1; . . . ; d in OðnÞ time, by Lemma 9 we can

compute the values TL x0; st
L

� �
for all kþ 1 6 t 6 i� 1 in OðnÞ time

(with the help of Lemma 6).
It remains to compute the solution index list K, for which we

present a simple linear time algorithm as follows. We assume
the values f t
L x0; s1

L

� �
for t ¼ 1; . . . ; i� 1 have been computed in

OðnÞ time.
Our algorithm will consider the indices incrementally from

t ¼ kþ 1 to t ¼ i� 1. A stack A is maintained during the algorithm
to store a sequence of indices. Initially A contains only one index
k, and after the algorithm finishes the index list in A from bottom
to top is exactly K. Algorithm 1 summarizes the pseudocode. For
each t with kþ 1 6 t 6 i� 1, the algorithm proceeds as follows.
Let kj be the index on the top of the current stack A. We first compare

the two values f t
L x0; s1

L

� �
and f

kj
L x0; s1

L

� �
. Note that both values have

been computed. If f t
L x0; s1

L

� �
> f

kj
L x0; s1

L

� �
, then we pop kj out of A and

consider the next top index on A (this is consistent with Property
3 of K and we ignore the detailed discussion on this). We claim that
the stack A will never be empty because the index k is at the bottom
of A. Indeed, recall that TL x0; s1

L

� �
¼ f k

L x0; s1
L

� �
by the definition of k.

Hence, f k
L x0; s1

L

� �
P f m

L x0; s1
L

� �
for any 1 6 m 6 i� 1, and in particular,

f t
L x0; s1

L

� �
6 f k

L x0; s1
L

� �
. Therefore, k will never be popped out of A. If

f t
L x0; s1

L

� �
6 f

kj
L x0; s1

L

� �
, we further compare the two values f t

L x0; st
L

� �
and f

kj
L x0; s

kj
L

� 	
. By Lemma 6, f t

L x0; st
L

� �
¼ f t

L x0; s1
L

� �
þ að2; tÞ and

f
kj
L x0; s

kj
L

� 	
¼ f

kj
L x0; s1

L

� �
þ að2; kjÞ. Hence, both f t

L x0; st
L

� �
and f

kj
L x0; s

kj
L

� 	
can be computed in constant time. If f t

L x0; st
L

� �
> f

kj
L x0; s

kj
L

� 	
, then

we push t on the top of A and set kjþ1 ¼ t (this is consistent with
Property 2 of K); otherwise, we ignore t (this is consistent with Prop-
erty 3 of K) and proceed on t þ 1. After t ¼ i� 1 is considered, we
terminate the algorithm and the index list in the stack A is our solu-
tion index list K. The running time of the algorithm is OðnÞ because
once an index is popped out of A it will never be considered again.

Algorithm 1. Computing the solution index list K ¼ fk1; . . . ; kdg
Input: The index k, the value x0, the scenario s1
L , the weight

intervals w�i ;w
þ
i

� �
Output: The solution index list K ¼ fk1; . . . ; kdg

1 do preprocessing for answering að�; �Þ queries;
2 for t  1 to i� 1 do
3 determine the function f t

L x; s1
L

� �
and compute the value

f t
L x0; s1

L

� �
;

4 end
5 initialize a stack A and push k into A;
6 for t  kþ 1 to i� 1 do
7 m the top index in A;
8 while f t

L x0; s1
L

� �
> f m

L x0; s1
L

� �
do

9 pop m out of A;
10 m the top index in A;
11 end
12 f t

L x0; st
L

� �
 f t

L x0; s1
L

� �
þ að2; tÞ;

13 f m
L x0; sm

L

� �
 f m

L x0; s1
L

� �
þ að2;mÞ;

14 if f t
L x0; st

L

� �
> f m

L x0; sm
L

� �
then

15 push t on the top of A;
16 end
17 end
18 return the index list in A from bottom to top as K;

We conclude this section with the following theorem.
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Theorem 2. The optimal position x� for the minmax regret problem
and the optimal maximum regret Rmaxðx�Þ can be computed in
Oðn log nÞ time and OðnÞ space.
5. Concluding remarks

In this paper, we presented an Oðn log nÞ time and OðnÞ space
algorithm for the minmax regret 1-facility location problem on
uncertain path networks. Very recently some other problem varia-
tions have been introduced and algorithms for them have been
proposed. Li, Xu, and Ni (2014) studied the problem for finding
two facilities and gave an Oðn3 log nÞ time algorithm. Ni, Xu, and
Dong (2014) developed an Oðn1þklog1þlog knÞ time algorithm for
finding k facilities for a general value of k, and Arumugam,
Augustine, Golin, and Srikanthan (2014) gave two algorithms for
the same problem with time complexities Oðkn2logknÞ and
Oðkn3 log nÞ, respectively. Higashikawa, Golin, and Katoh (2014)
investigated the problem for finding a 1-facility on a tree network
and proposed an Oðnlog2nÞ time algorithm. It would be interesting
to see whether the techniques presented in this paper can be used
for solving these problem variations.
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